Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 17 trang 29 SGK Toán 12 tập 2 theo chương trình Chân trời sáng tạo.
Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và giúp bạn nắm vững kiến thức Toán học.
Tính các tích phân sau: a) (intlimits_{frac{pi }{6}}^{frac{pi }{4}} {frac{1}{{{{sin }^2}x}}dx} ) b) (intlimits_0^{frac{pi }{4}} {left( {1 + tan x} right)cos xdx} )
Đề bài
Tính các tích phân sau: a) \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {\frac{1}{{{{\sin }^2}x}}dx} \) b) \(\int\limits_0^{\frac{\pi }{4}} {\left( {1 + \tan x} \right)\cos xdx} \)
Phương pháp giải - Xem chi tiết
Sử dụng các tính chất của tích phân để đưa về tính các tích phân cơ bản.
Lời giải chi tiết
a) \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {\frac{1}{{{{\sin }^2}x}}dx} = \left. {\left( { - \cot x} \right)} \right|_{\frac{\pi }{6}}^{\frac{\pi }{4}} = \left( { - \cot \frac{\pi }{4}} \right) - \left( { - \cot \frac{\pi }{6}} \right) = - 1 + \sqrt 3 \)
b) \(\int\limits_0^{\frac{\pi }{4}} {\left( {1 + \tan x} \right)\cos xdx} = \int\limits_0^{\frac{\pi }{4}} {\left( {\cos x + \sin x} \right)dx} = \left. {\left( {\sin x - \cos x} \right)} \right|_0^{\frac{\pi }{4}}\)
\( = \left( {\sin \frac{\pi }{4} - \cos \frac{\pi }{4}} \right) - \left( {\sin 0 - \cos 0} \right) = 0 - \left( { - 1} \right) = 1\)
Bài tập 17 trang 29 SGK Toán 12 tập 2 thuộc chương trình Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của đại lượng. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài tập 17 thường bao gồm các dạng bài sau:
Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài tập 17 trang 29 SGK Toán 12 tập 2, chúng tôi sẽ trình bày lời giải chi tiết cho từng dạng bài:
Lời giải:
f'(x) = 3x2 - 4x + 5
Lời giải:
g'(x) = 4x3 - 8x
Giải phương trình g'(x) = 0, ta được x = 0, x = √2, x = -√2
Xét dấu g'(x), ta thấy:
Vậy hàm số g(x) đạt cực đại tại x = -√2 và x = √2, đạt cực tiểu tại x = 0.
Lời giải:
h'(x) = 2x - 6
Giải phương trình h'(x) = 0, ta được x = 3
Xét dấu h'(x), ta thấy:
Vậy hàm số h(x) nghịch biến trên khoảng (-∞, 3) và đồng biến trên khoảng (3, +∞).
Để giải bài tập đạo hàm hiệu quả, bạn nên:
Bài tập 17 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn khi giải quyết các bài toán tương tự.