Logo Header
  1. Môn Toán
  2. Giải bài tập 5 trang 81 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 5 trang 81 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 5 trang 81 SGK Toán 12 tập 2 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 5 trang 81 SGK Toán 12 tập 2 theo chương trình Chân trời sáng tạo.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong học tập.

Cho hai biến cố ngẫu nhiên \(A\) và \(B\). Biết rằng \(P\left( {A|B} \right) = 2P\left( {B|A} \right)\) và \(P\left( {AB} \right) \ne 0\). Tính tỉ số \(\frac{{P\left( A \right)}}{{P\left( B \right)}}\).

Đề bài

Cho hai biến cố ngẫu nhiên \(A\) và \(B\). Biết rằng \(P\left( {A|B} \right) = 2P\left( {B|A} \right)\) và \(P\left( {AB} \right) \ne 0\). Tính tỉ số \(\frac{{P\left( A \right)}}{{P\left( B \right)}}\).

Phương pháp giải - Xem chi tiếtGiải bài tập 5 trang 81 SGK Toán 12 tập 2 - Chân trời sáng tạo 1

Sử dụng công thức Bayes để tính tỉ số \(\frac{{P\left( A \right)}}{{P\left( B \right)}}\).

Lời giải chi tiết

Do \(P\left( {AB} \right) \ne 0\) và \(P\left( {AB} \right) = P\left( A \right).P\left( {B|A} \right) = P\left( B \right).P\left( {A|B} \right)\) nên \(P\left( {A|B} \right)\), \(P\left( B \right)\), \(P\left( A \right)\) và \(P\left( {B|A} \right)\) đều khác 0.

Do \(P\left( A \right).P\left( {B|A} \right) = P\left( B \right).P\left( {A|B} \right)\) nên \(\frac{{P\left( A \right)}}{{P\left( B \right)}} = \frac{{P\left( {A|B} \right)}}{{P\left( {B|A} \right)}}\).

Vậy \(\frac{{P\left( A \right)}}{{P\left( B \right)}} = \frac{{P\left( {A|B} \right)}}{{P\left( {B|A} \right)}} = 2\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 5 trang 81 SGK Toán 12 tập 2 - Chân trời sáng tạo đặc sắc thuộc chuyên mục toán lớp 12 trên nền tảng soạn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 5 trang 81 SGK Toán 12 tập 2 - Chân trời sáng tạo: Tổng quan

Bài tập 5 trang 81 SGK Toán 12 tập 2 thuộc chương trình Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của đại lượng. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập 5 trang 81 SGK Toán 12 tập 2

Bài tập 5 thường bao gồm các dạng bài sau:

  • Dạng 1: Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước, thường là hàm số đa thức, hàm số hữu tỉ, hoặc hàm số lượng giác.
  • Dạng 2: Tìm cực trị của hàm số: Yêu cầu tìm điểm cực đại, điểm cực tiểu của hàm số bằng cách giải phương trình đạo hàm bằng 0 và xét dấu đạo hàm.
  • Dạng 3: Khảo sát sự biến thiên của hàm số: Yêu cầu xác định khoảng đồng biến, khoảng nghịch biến của hàm số dựa vào dấu của đạo hàm.
  • Dạng 4: Ứng dụng đạo hàm để giải quyết bài toán thực tế: Yêu cầu sử dụng đạo hàm để giải quyết các bài toán liên quan đến tốc độ thay đổi, tối ưu hóa, hoặc các bài toán vật lý.

Lời giải chi tiết bài tập 5 trang 81 SGK Toán 12 tập 2 - Chân trời sáng tạo

Để giúp bạn hiểu rõ hơn về cách giải bài tập 5 trang 81, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi. Lưu ý rằng, đây chỉ là một ví dụ, và bạn có thể áp dụng các phương pháp tương tự để giải các bài tập khác.

Ví dụ: Giải bài tập 5a trang 81 SGK Toán 12 tập 2

Đề bài: Tính đạo hàm của hàm số f(x) = x3 - 2x2 + 5x - 1.

Lời giải:

Áp dụng quy tắc tính đạo hàm của tổng và hiệu, ta có:

f'(x) = (x3)' - (2x2)' + (5x)' - (1)'

f'(x) = 3x2 - 4x + 5 - 0

f'(x) = 3x2 - 4x + 5

Các lưu ý khi giải bài tập 5 trang 81 SGK Toán 12 tập 2

  • Nắm vững các quy tắc tính đạo hàm: Đây là yếu tố cơ bản để giải quyết các bài tập về đạo hàm.
  • Hiểu rõ các khái niệm liên quan: Đảm bảo bạn hiểu rõ các khái niệm như đạo hàm, cực trị, khoảng đơn điệu.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài.
  • Sử dụng các công cụ hỗ trợ: Bạn có thể sử dụng máy tính cầm tay hoặc các phần mềm toán học để kiểm tra lại kết quả.

Tài liệu tham khảo hữu ích

Ngoài SGK Toán 12 tập 2, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách bài tập Toán 12
  • Các trang web học toán online uy tín
  • Các video hướng dẫn giải bài tập Toán 12 trên YouTube

Kết luận

Bài tập 5 trang 81 SGK Toán 12 tập 2 là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng rằng, với lời giải chi tiết và các lưu ý trên, bạn sẽ tự tin hơn trong việc giải quyết các bài tập tương tự. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12