Chào mừng các em học sinh đến với lời giải chi tiết bài tập 18 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Một vật chuyển động với tốc độ (vleft( t right) = 3t + 4{rm{ }}left( {{rm{m/s}}} right)), với thời gian (t) tính theo giây, (t in left[ {0;5} right]). Tính quãng đường vật đi được trong khoảng thời gian từ (t = 0) đến (t = 5).
Đề bài
Một vật chuyển động với tốc độ \(v\left( t \right) = 3t + 4{\rm{ }}\left( {{\rm{m/s}}} \right)\), với thời gian \(t\) tính theo giây, \(t \in \left[ {0;5} \right]\). Tính quãng đường vật đi được trong khoảng thời gian từ \(t = 0\) đến \(t = 5\).
Phương pháp giải - Xem chi tiết
Quãng đường vật đi được trong khoảng thời gian từ \(t = 0\) đến \(t = 5\) là \(s = \int\limits_0^5 {v\left( t \right)dt} \)
Lời giải chi tiết
Quãng đường vật đi được trong khoảng thời gian từ \(t = 0\) đến \(t = 5\) là
\(s = \int\limits_0^5 {v\left( t \right)dt} = \int\limits_0^5 {\left( {3t + 4} \right)dt} = \left. {\left( {\frac{{3{t^2}}}{2} + 4t} \right)} \right|_0^5 = \frac{{115}}{2}\) (m)
Bài tập 18 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế, cụ thể là tìm đạo hàm của hàm số và sử dụng đạo hàm để khảo sát hàm số.
Bài tập 18 bao gồm các câu hỏi nhỏ, yêu cầu học sinh:
Để giải bài tập 18 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
Câu a: Tính đạo hàm của hàm số f(x) = x3 - 3x2 + 2x - 1.
Lời giải:
f'(x) = 3x2 - 6x + 2
Câu b: Xác định khoảng đồng biến, nghịch biến của hàm số f(x) = x3 - 3x2 + 2x - 1.
Lời giải:
f'(x) = 3x2 - 6x + 2
Giải phương trình f'(x) = 0, ta được x1 = (3 - √3)/3 và x2 = (3 + √3)/3.
Lập bảng xét dấu f'(x):
x | -∞ | (3 - √3)/3 | (3 + √3)/3 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
f(x) | Đồng biến | Nghịch biến | Đồng biến |
Vậy hàm số đồng biến trên các khoảng (-∞; (3 - √3)/3) và ((3 + √3)/3; +∞), nghịch biến trên khoảng ((3 - √3)/3; (3 + √3)/3).
Câu c: Tìm cực trị của hàm số f(x) = x3 - 3x2 + 2x - 1.
Lời giải:
Hàm số đạt cực đại tại x1 = (3 - √3)/3, giá trị cực đại là f(x1) = ...
Hàm số đạt cực tiểu tại x2 = (3 + √3)/3, giá trị cực tiểu là f(x2) = ...
Bài tập 18 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả mà giaitoan.edu.vn cung cấp, các em sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.