Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 8. Bài viết này sẽ hướng dẫn bạn giải bài 1 trang 87 sách bài tập toán 8 - Cánh diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy logic và vận dụng kiến thức đã học. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.
Tính độ dài (x,y,z) ở các hình (3a,3b,3c,3d) (độ dài ở các hình là cùng đơn vị đo):
Đề bài
Tính độ dài \(x,y,z\) ở các hình \(3a,3b,3c,3d\) (độ dài ở các hình là cùng đơn vị đo):
Phương pháp giải - Xem chi tiết
Áp dụng định lí Pythagore trong tam giác vuông: Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương hai cạnh góc vuông.
Lời giải chi tiết
Áp dụng định lí Pythagore, ta có:
a) \(A{C^2} = A{B^2} + B{C^2}\), suy ra \({x^2} = {\left( {\sqrt {17} } \right)^2} + {\left( {\sqrt {19} } \right)^2} = 36\)
Vậy \(x = 6\)
b) \(D{E^2} = D{G^2} + G{E^2}\), suy ra \({10^2} = {6^2} + {y^2}\)
Vậy \(y = 8\)
c) \(I{K^2} = H{I^2} + H{K^2}\), suy ra \({z^2} = {3^2} + {3^2}\)
Vậy \(z = \sqrt {18} \)
d) Do tam giác \(MNQ\) vuông tại \(Q\) nên theo định lí Pythagore ta có \(M{N^2} = M{Q^2} + N{Q^2}\).
Suy ra \(M{Q^2} = M{N^2} - N{Q^2}\).
Do đó, \(M{Q^2} = {9^2} - {3^2} = 72\)
Do tam giác \(MNQ\) vuông tại \(Q\) nên theo định lí Pythagore ta có: \(M{P^2} = M{Q^2} + P{Q^2}\).
Suy ra \(P{Q^2} = M{P^2} - M{Q^2}\).
Do đó \({t^2} = {11^2} - 72 = 49\)
Vậy \(t = \sqrt {49} = 7\).
Bài 1 trang 87 sách bài tập toán 8 - Cánh diều thuộc chương trình học toán 8, tập trung vào việc ôn tập và củng cố kiến thức về các phép biến đổi đại số. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để thực hiện các phép tính, rút gọn biểu thức và giải phương trình.
Bài 1 trang 87 sách bài tập toán 8 - Cánh diều thường bao gồm các dạng bài tập sau:
Để giải bài 1 trang 87 sách bài tập toán 8 - Cánh diều một cách hiệu quả, bạn có thể tham khảo các bước sau:
Bài tập: Rút gọn biểu thức sau: (x + 2)(x - 2)
Giải:
(x + 2)(x - 2) = x2 - 22 = x2 - 4
Để giải nhanh các bài tập về phép biến đổi đại số, bạn có thể sử dụng các công thức và quy tắc sau:
Để củng cố kiến thức và kỹ năng giải bài tập, bạn có thể luyện tập thêm với các bài tập tương tự trong sách bài tập toán 8 - Cánh diều hoặc trên các trang web học toán online.
Việc giải bài tập toán 8 không chỉ giúp bạn nắm vững kiến thức mà còn rèn luyện tư duy logic, khả năng giải quyết vấn đề và kỹ năng tính toán. Đây là những kỹ năng quan trọng không chỉ trong học tập mà còn trong cuộc sống.
Hy vọng rằng bài viết này đã cung cấp cho bạn những thông tin hữu ích và giúp bạn giải bài 1 trang 87 sách bài tập toán 8 - Cánh diều một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!
Công thức | Mô tả |
---|---|
(a + b)2 | Bình phương của một tổng |
(a - b)2 | Bình phương của một hiệu |
a2 - b2 | Hiệu hai bình phương |