Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 24 trang 41 sách bài tập Toán 8 Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 24 trang 41 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Cho biểu thức: \(D = \left( {\frac{{x + 2}}{{3x}} + \frac{2}{{x + 1}} - 3} \right):\frac{{2 - 4x}}{{x + 1}} - \frac{{3x - {x^2} + 1}}{{3x}}\)
Đề bài
Cho biểu thức: \(D = \left( {\frac{{x + 2}}{{3x}} + \frac{2}{{x + 1}} - 3} \right):\frac{{2 - 4x}}{{x + 1}} - \frac{{3x - {x^2} + 1}}{{3x}}\)
a) Viết điều kiện xác định của biểu thức \(D\)
b) Tính giá trị của biểu thức \(D\) tại \(x = 5947\)
c) Tìm giá trị của \(x\) để \(D\) nhận giá trị nguyên.
Phương pháp giải - Xem chi tiết
Áp dụng hằng đẳng thức và phép cộng trừ nhân chia phân thức đại số để rút gọn rồi tính giá trị của biểu thức.
Lời giải chi tiết
a) Điều kiện xác định của biểu thức \(D\) là: \(x \ne 0;x \ne - 1;x \ne \frac{1}{2}\)
b) Rút gọn biểu thức \(D\) ta có:
\(\begin{array}{l}D = \left( {\frac{{x + 2}}{{3x}} + \frac{2}{{x + 1}} - 3} \right):\frac{{2 - 4x}}{{x + 1}} - \frac{{3x - {x^2} + 1}}{{3x}}\\ = \left( {\frac{{\left( {x + 2} \right)\left( {x + 1} \right) + 2.3x - 3.3x.\left( {x + 1} \right)}}{{3x\left( {x + 1} \right)}}} \right).\frac{{x + 1}}{{2 - 4x}} - \frac{{3x - {x^2} + 1}}{{3x}}\\ = \left( {\frac{{{x^2} + 3x + 2 + 6x - 9{x^2} - 9x}}{{3x\left( {2 - 4x} \right)}}} \right) - \frac{{3x - {x^2} + 1}}{{3x}}\\ = \frac{{ - 8{x^2} + 2}}{{3x\left( {2 - 4x} \right)}} - \frac{{3x - {x^2} + 1}}{{3x}}\\ = \frac{{ - 2\left( {2x - 1} \right)\left( {2x + 1} \right)}}{{6x\left( {1 - 2x} \right)}} - \frac{{3x - {x^2} + 1}}{{3x}}\\ = \frac{{2x + 1}}{{3x}} - \frac{{3x - {x^2} + 1}}{{3x}} = \frac{{{x^2} - x}}{{3x}} = \frac{{x - 1}}{3}\end{array}\)
Giá trị của biểu thức \(D\) tại \(x = 5947\) là: \(\frac{{5947 - 1}}{3} = 1982\)
c) Để \(D\) nhận giá trị nguyên thì \(\frac{{x - 1}}{3}\) phải nhận giá trị nguyên. Suy ra \(x - 1 \vdots 3\), tức là \(x - 1 = 3k\) hay \(x = 3k + 1\) với \(k \in \mathbb{Z}\) (thỏa mãn điều kiện xác định).
Bài 24 trang 41 sách bài tập Toán 8 Cánh Diều thuộc chương trình học về hình học, cụ thể là phần kiến thức liên quan đến tứ giác. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về tứ giác, các tính chất của tứ giác đặc biệt (hình chữ nhật, hình thoi, hình vuông, hình bình hành) và các định lý liên quan đến tứ giác.
Bài tập 24 trang 41 thường bao gồm các dạng bài tập sau:
Để giải bài 24 trang 41 một cách hiệu quả, bạn có thể tham khảo các bước sau:
Bài toán: Cho tứ giác ABCD có AB = 4cm, BC = 6cm, CD = 4cm, DA = 6cm và AC = 8cm. Chứng minh rằng tứ giác ABCD là hình bình hành.
Lời giải:
Xét tam giác ABC và tam giác CDA, ta có:
Do đó, tam giác ABC bằng tam giác CDA (cạnh - cạnh - cạnh). Suy ra ∠BAC = ∠DCA và ∠BCA = ∠DAC. Vì ∠BAC = ∠DCA và ∠BCA = ∠DAC nên AB // CD và BC // DA. Vậy tứ giác ABCD là hình bình hành.
Để giải nhanh các bài tập về tứ giác, bạn nên:
Để củng cố kiến thức và kỹ năng giải toán, bạn có thể làm thêm các bài tập sau:
Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 24 trang 41 sách bài tập Toán 8 Cánh Diều một cách hiệu quả. Chúc bạn học tập tốt và đạt kết quả cao trong các bài kiểm tra!