Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 32 trang 72 sách bài tập Toán 8 Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 32 trang 72 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Tam giác \(ABC\) có độ dài các cạnh là \(AB = 9\) cm, \(AC = 7\) cm, \(BC = 15\) cm. Tam giác \(MNP\) đồng dạng với tam giác \(ABC\).
Đề bài
Tam giác \(ABC\) có độ dài các cạnh là \(AB = 9\) cm, \(AC = 7\) cm, \(BC = 15\) cm. Tam giác \(MNP\) đồng dạng với tam giác \(ABC\). Tính độ dài các cạnh của tam giác \(MNP\), biết chu vi của nó là 46,5 cm.
Phương pháp giải - Xem chi tiết
Dựa vào trường hợp đồng dạng thứ nhất: cạnh – cạnh – cạnh
Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng với nhau.
Lời giải chi tiết
Giả sử tam giác \(MNP\) đồng dạng với tam giác \(ABC\) theo tỉ số \(k\).
Suy ra: \(\frac{{MN}}{9} = \frac{{MP}}{7} = \frac{{NP}}{{15}} = k\).
Mặt khác, chu vi tam giác \(MNP\) là 46,5 cm nên ta có: \(9k + 7k + 15k = 46,5\).
Từ đó \(k = 1,5\), suy ra: \(MN = 9.1,5 = 13,5\) (cm); \(MP = 7.1,5 = 10,5\) (cm); \(NP = 15.1,5 = 22,5\) (cm). Vậy độ dài các cạnh \(MN,MP,NP\) của tam giác \(MNP\) lần lượt là: 13,5 cm; 10,5 cm; 22,5 cm.
Bài 32 trang 72 sách bài tập Toán 8 Cánh Diều thuộc chương trình học về hình học, cụ thể là phần kiến thức liên quan đến tứ giác. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về tứ giác, các tính chất của tứ giác đặc biệt (hình chữ nhật, hình thoi, hình vuông, hình bình hành) và các định lý liên quan đến tứ giác.
Bài 32 thường xoay quanh việc chứng minh một tứ giác là một hình đặc biệt nào đó dựa trên các điều kiện cho trước. Các điều kiện này có thể là về độ dài cạnh, góc, đường chéo hoặc mối quan hệ giữa chúng. Để giải bài toán, học sinh cần phân tích kỹ đề bài, xác định các yếu tố đã cho và lựa chọn phương pháp chứng minh phù hợp.
Có nhiều phương pháp khác nhau để chứng minh một tứ giác là một hình đặc biệt. Một số phương pháp phổ biến bao gồm:
Đề bài: Cho tứ giác ABCD có AB = CD và AD = BC. Chứng minh rằng tứ giác ABCD là hình bình hành.
Lời giải:
Khi giải bài toán về tứ giác, học sinh cần chú ý:
Để củng cố kiến thức và kỹ năng giải bài toán về tứ giác, học sinh nên làm thêm các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác. Việc luyện tập thường xuyên sẽ giúp học sinh nắm vững kiến thức và tự tin hơn trong các bài kiểm tra.
Bài 32 trang 72 sách bài tập Toán 8 Cánh Diều là một bài toán quan trọng giúp học sinh hiểu sâu hơn về các khái niệm và tính chất của tứ giác. Hy vọng rằng với lời giải chi tiết và phương pháp giải được trình bày trong bài viết này, các bạn học sinh sẽ giải quyết bài toán một cách dễ dàng và hiệu quả. Chúc các bạn học tốt!