Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8. Bài viết này sẽ hướng dẫn bạn cách giải bài 22 trang 67 trong sách bài tập Toán 8 Cánh Diều, giúp bạn nắm vững kiến thức và tự tin hơn trong học tập.
Chúng tôi luôn cố gắng cung cấp những giải pháp tối ưu, giúp bạn hiểu rõ bản chất của bài toán và áp dụng vào các bài tập tương tự.
Cho tam giác \(ABC\) có chu vi bằng 74 cm. Đường phân giác của góc \(A\) chia cạnh \(BC\) thành hai đoạn \(BD\) và \(DC\) tỉ lệ với 2 và 3,
Đề bài
Cho tam giác \(ABC\) có chu vi bằng 74 cm. Đường phân giác của góc \(A\) chia cạnh \(BC\) thành hai đoạn \(BD\) và \(DC\) tỉ lệ với 2 và 3, đường phân giác của góc \(C\) chia cạnh \(AB\) thành hai đoạn \(EB\) và \(EA\) tỉ lệ với 4 và 5. Tính độ dài các cạnh của tam giác \(ABC\).
Phương pháp giải - Xem chi tiết
Tính chất đường phân giác của tam giác: trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy.
Lời giải chi tiết
Ta có:
\(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}} = \frac{2}{3}\), suy ra \(\frac{{AB}}{2} = \frac{{AC}}{3}\) (1)
\(\frac{{BC}}{{AC}} = \frac{{EB}}{{EA}} = \frac{4}{5}\), suy ra \(\frac{{BC}}{4} = \frac{{AC}}{5}\) (2)
Từ (1) và (2) suy ra: \(\frac{{AB}}{{10}} = \frac{{BC}}{{12}} = \frac{{AC}}{{15}}\).
Do đó: \(\frac{{AB}}{{10}} = \frac{{BC}}{{12}} = \frac{{AC}}{{15}} = \frac{{AB + BC + AC}}{{10 + 12 + 15}} = \frac{{74}}{{37}} = 2\).
Vậy: \(AB = 20cm,BC = 24cm,AC = 30cm\).
Bài 22 trang 67 Sách bài tập Toán 8 Cánh Diều thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình thang cân. Bài tập này yêu cầu học sinh phải hiểu rõ các định nghĩa, định lý liên quan đến hình thang cân để giải quyết một cách chính xác.
Bài 22 thường bao gồm các dạng bài tập sau:
Để giải bài 22 trang 67 Sách bài tập Toán 8 Cánh Diều một cách hiệu quả, bạn cần:
Bài toán: Cho hình thang cân ABCD (AB // CD), có AB = 5cm, CD = 10cm, AD = BC = 6cm. Tính chiều cao của hình thang.
Giải:
Kẻ AH và BK vuông góc với CD (H, K thuộc CD). Khi đó, AH = BK là chiều cao của hình thang.
Vì ABCD là hình thang cân nên DH = KC = (CD - AB) / 2 = (10 - 5) / 2 = 2.5cm.
Xét tam giác vuông ADH, ta có: AH2 = AD2 - DH2 = 62 - 2.52 = 36 - 6.25 = 29.75.
Suy ra, AH = √29.75 ≈ 5.45cm.
Vậy, chiều cao của hình thang ABCD là khoảng 5.45cm.
Để học tốt môn Toán 8, bạn có thể tham khảo thêm các tài liệu sau:
Bài 22 trang 67 Sách bài tập Toán 8 Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về hình thang cân. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin giải quyết bài tập này một cách hiệu quả. Chúc bạn học tốt!