Chào mừng bạn đến với Giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 8. Bài viết này sẽ hướng dẫn bạn giải bài 5 trang 88 sách bài tập toán 8 - Cánh diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy logic và vận dụng kiến thức đã học. Vì vậy, Giaitoan.edu.vn luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để giúp bạn hiểu rõ bản chất của bài toán.
Cho tam giác \(ABC\) vuông cân tại \(A\). Qua \(A\) kẻ đường thẳng \(d\) bất kì sao cho đường thẳng \(d\) không cắt đoạn thẳng \(BC\).
Đề bài
Cho tam giác \(ABC\) vuông cân tại \(A\). Qua \(A\) kẻ đường thẳng \(d\) bất kì sao cho đường thẳng \(d\) không cắt đoạn thẳng \(BC\). Gọi \(D,E\) lần lượt là hình chiếu của \(B,C\) trên đường thẳng \(d\). Chứng minh \(A{D^2} + A{E^2}\) không phụ thuộc vào vị trí của đường thẳng \(d\).
Phương pháp giải - Xem chi tiết
Dựa vào các trường hợp bằng nhau của tam giác vuông và định lí Pythagore trong tam giác vuông để chứng minh \(A{D^2} + A{E^2}\) không phụ thuộc vào vị trí của đường thẳng \(d\).
Lời giải chi tiết
Ta chứng minh được:
\(\widehat {BAD} + \widehat {ABD} = 90^\circ \) và \(\widehat {BAD} + \widehat {CAE} = 90^\circ \) nên \(\widehat {ABD} = \widehat {CAE}\).
\(\Delta ABD = \Delta CAE\) (cạnh huyền – góc nhọn)
Suy ra \(AD = CE\)
Do đó \(A{D^2} + A{E^2} = C{E^2} + A{E^2} = A{C^2}\) (vì tam giác \(CAE\) vuông tại \(E\))
Vậy \(A{D^2} + A{E^2}\) không phụ thuộc vào vị trí của đường thẳng \(d\).
Bài 5 trang 88 sách bài tập toán 8 - Cánh diều thuộc chương trình học toán 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình thang cân. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các khái niệm và định lý liên quan.
Bài 5 yêu cầu chúng ta chứng minh một số tính chất liên quan đến hình thang cân. Thông thường, bài tập sẽ đưa ra một hình thang cân ABCD với O là giao điểm của hai đường chéo AC và BD. Yêu cầu có thể là chứng minh tam giác ABO cân, tam giác CDO cân, hoặc chứng minh AD = BC.
Để giải bài 5 trang 88 sách bài tập toán 8 - Cánh diều, chúng ta có thể thực hiện theo các bước sau:
Xét tam giác ABO và tam giác CDO, ta có:
Do đó, tam giác ABO = tam giác CDO (c-g-c). Suy ra AB = CD (hai cạnh tương ứng).
Vì ABCD là hình thang cân nên AD = BC (tính chất hình thang cân).
Giả sử ABCD là hình thang cân với AB = 5cm, CD = 10cm, AD = BC = 6cm. Hãy tính độ dài đường chéo AC.
Để giải bài toán này, chúng ta có thể sử dụng định lý Pitago và các tính chất của hình thang cân. Tuy nhiên, việc giải chi tiết sẽ phụ thuộc vào thông tin cụ thể của bài toán.
Bài 5 trang 88 sách bài tập toán 8 - Cánh diều là một bài tập quan trọng giúp củng cố kiến thức về hình thang cân. Hy vọng với hướng dẫn chi tiết này, bạn đã có thể giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!