Chào mừng các em học sinh đến với lời giải chi tiết bài 6 trang 34 sách bài tập Toán 8 Cánh Diều. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích rõ ràng từng bước để giúp các em hiểu bài và làm bài tập một cách hiệu quả.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp tài liệu học tập chất lượng và hỗ trợ giải đáp mọi thắc mắc.
Quy đồng mẫu thức các phân thức trong mỗi trường hợp sau:
Đề bài
Quy đồng mẫu thức các phân thức trong mỗi trường hợp sau:
a) \(\frac{2}{{15{x^3}{y^2}}};\frac{y}{{10{x^4}{z^3}}}\) và \(\frac{x}{{20{y^3}z}}\)
b) \(\frac{x}{{2x + 6}}\) và \(\frac{4}{{{x^2} - 9}}\)
c) \(\frac{{2x}}{{{x^3} - 1}}\) và \(\frac{{x - 1}}{{{x^2} + x + 1}}\)
d) \(\frac{x}{{1 + 2x + {x^2}}}\) và \(\frac{3}{{5{x^2} - 5}}\)
Phương pháp giải - Xem chi tiết
Muốn quy đồng mẫu thức nhiều phân thức, ta có thể làm như sau:
Bước 1: phân tích các mẫu thức thành nhân tử (nếu cần) rồi tìm mẫu thức chung (MTC)
Bước 2: tìm nhân tử phụ của mỗi mẫu thức (bằng cách chia MTC cho từng mẫu)
Bước 3: nhân cả tử và mẫu của mỗi phân thức đã cho với nhân tử phụ tương ứng.
Lời giải chi tiết
a) Ta có:
Chọn MTC là: \(60{x^4}{y^3}{z^3}\).
Nhân tử phụ của ba mẫu thức \(15{x^3}{y^2};10{x^4}{z^3};20{y^3}z\) lần lượt là: \(4xy{z^3};6{y^3};3{x^4}{z^2}\)
Vậy: \(\frac{2}{{15{x^3}{y^2}}} = \frac{{2\left( {4xy{z^3}} \right)}}{{15{x^3}{y^2}.4xy{z^3}}} = \frac{{8xy{z^3}}}{{60{x^4}{y^3}{z^3}}}\)
\(\frac{y}{{10{x^4}{z^3}}} = \frac{{y.6{y^3}}}{{10{x^4}{z^3}}} = \frac{{6{y^4}}}{{60{x^4}{y^3}{z^3}}}\)
\(\frac{x}{{20{y^3}z}} = \frac{{x.3{x^4}{z^2}}}{{20{y^3}z.3{x^4}{z^2}}} = \frac{{3{x^5}{z^2}}}{{60{x^4}{y^3}{z^3}}}\)
b) Ta có: \(2x + 6 = 2\left( {x + 3} \right);{x^2} - 9 = \left( {x + 3} \right)\left( {x - 3} \right)\)
Chọn MTC là: \(2\left( {{x^2} - 9} \right)\)
Nhân tử phụ của hai mẫu thức \(2x + 6;{x^2} - 9\) lần lượt là \(\left( {x - 3} \right);2\)
Vậy: \(\frac{x}{{2x + 6}} = \frac{{x\left( {x - 3} \right)}}{{2\left( {x + 3} \right)\left( {x - 3} \right)}} = \frac{{{x^2} - 3x}}{{2\left( {{x^2} - 9} \right)}}\)
\(\frac{4}{{{x^2} - 9}} = \frac{{4.2}}{{2\left( {x + 3} \right)\left( {x - 3} \right)}} = \frac{8}{{2\left( {{x^2} - 9} \right)}}\)
c) Ta có: \({x^3} - 1 = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\)
Chọn MTC là: \({x^3} - 1\)
Nhân tử phụ của hai mẫu thức \({x^3} - 1;{x^2} + x + 1\) lần lượt là: \(1;\left( {x - 1} \right)\)
Vậy: \(\frac{{2x}}{{{x^3} - 1}}\)
\(\frac{{x - 1}}{{{x^2} + x + 1}} = \frac{{\left( {x - 1} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{{{\left( {x - 1} \right)}^2}}}{{{x^3} - 1}}\)
d) Ta có: \(1 + 2x + {x^2} = {\left( {x + 1} \right)^2};5{x^2} - 5 = 5\left( {{x^2} - 1} \right) = 5\left( {x - 1} \right)\left( {x + 1} \right)\)
Chọn MTC là: \(5\left( {x - 1} \right){\left( {x + 1} \right)^2}\)
Nhân tử phụ của hai mẫu thức \(1 + 2x + {x^2};5{x^2} - 5\) lần lượt là: \(5\left( {x - 1} \right);x + 1\)
Vậy: \(\frac{x}{{1 + 2x + {x^2}}} = \frac{{x.5.\left( {x - 1} \right)}}{{5\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}} = \frac{{5x\left( {x - 1} \right)}}{{5\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}}\)
\(\frac{3}{{5{x^2} - 5}} = \frac{{3\left( {x + 1} \right)}}{{5\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}}\)
Bài 6 trang 34 sách bài tập Toán 8 Cánh Diều thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình thang cân. Bài tập yêu cầu học sinh phải hiểu rõ các định nghĩa, định lý và tính chất liên quan để giải quyết các bài toán thực tế.
Bài tập 6 trang 34 sách bài tập Toán 8 Cánh Diều thường bao gồm các dạng bài sau:
Để giải bài 6 trang 34 sách bài tập Toán 8 Cánh Diều một cách hiệu quả, các em cần thực hiện theo các bước sau:
Bài toán: Cho hình thang cân ABCD (AB // CD), AB = 5cm, CD = 10cm, AD = 6cm. Tính độ dài đường cao của hình thang.
Giải:
Kẻ AH và BK vuông góc với CD (H, K thuộc CD). Khi đó, AH = BK là đường cao của hình thang.
Vì ABCD là hình thang cân nên DH = KC = (CD - AB) / 2 = (10 - 5) / 2 = 2.5cm.
Áp dụng định lý Pitago vào tam giác ADH vuông tại H, ta có:
AH2 = AD2 - DH2 = 62 - 2.52 = 36 - 6.25 = 29.75
Suy ra, AH = √29.75 ≈ 5.45cm.
Vậy, đường cao của hình thang ABCD là khoảng 5.45cm.
Để giải nhanh các bài tập liên quan đến hình thang cân, các em có thể áp dụng một số mẹo sau:
Để củng cố kiến thức và kỹ năng giải bài tập về hình thang cân, các em nên luyện tập thêm các bài tập tương tự trong sách bài tập và các đề thi thử. Ngoài ra, các em có thể tham khảo các tài liệu học tập trực tuyến và các video hướng dẫn giải bài tập trên YouTube.
Bài 6 trang 34 sách bài tập Toán 8 Cánh Diều là một bài tập quan trọng giúp các em hiểu rõ hơn về các tính chất và ứng dụng của hình thang cân. Hy vọng rằng với hướng dẫn chi tiết và các ví dụ minh họa trong bài viết này, các em sẽ tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong môn Toán.