Logo Header
  1. Môn Toán
  2. Giải bài 6 trang 34 sách bài tập toán 8 - Cánh diều

Giải bài 6 trang 34 sách bài tập toán 8 - Cánh diều

Giải bài 6 trang 34 Sách bài tập Toán 8 - Cánh Diều

Chào mừng các em học sinh đến với lời giải chi tiết bài 6 trang 34 sách bài tập Toán 8 Cánh Diều. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích rõ ràng từng bước để giúp các em hiểu bài và làm bài tập một cách hiệu quả.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp tài liệu học tập chất lượng và hỗ trợ giải đáp mọi thắc mắc.

Quy đồng mẫu thức các phân thức trong mỗi trường hợp sau:

Đề bài

Quy đồng mẫu thức các phân thức trong mỗi trường hợp sau:

a) \(\frac{2}{{15{x^3}{y^2}}};\frac{y}{{10{x^4}{z^3}}}\) và \(\frac{x}{{20{y^3}z}}\)

b) \(\frac{x}{{2x + 6}}\) và \(\frac{4}{{{x^2} - 9}}\)

c) \(\frac{{2x}}{{{x^3} - 1}}\) và \(\frac{{x - 1}}{{{x^2} + x + 1}}\)

d) \(\frac{x}{{1 + 2x + {x^2}}}\) và \(\frac{3}{{5{x^2} - 5}}\)

Phương pháp giải - Xem chi tiếtGiải bài 6 trang 34 sách bài tập toán 8 - Cánh diều 1

Muốn quy đồng mẫu thức nhiều phân thức, ta có thể làm như sau:

Bước 1: phân tích các mẫu thức thành nhân tử (nếu cần) rồi tìm mẫu thức chung (MTC)

Bước 2: tìm nhân tử phụ của mỗi mẫu thức (bằng cách chia MTC cho từng mẫu)

Bước 3: nhân cả tử và mẫu của mỗi phân thức đã cho với nhân tử phụ tương ứng.

Lời giải chi tiết

a) Ta có:

Chọn MTC là: \(60{x^4}{y^3}{z^3}\).

Nhân tử phụ của ba mẫu thức \(15{x^3}{y^2};10{x^4}{z^3};20{y^3}z\) lần lượt là: \(4xy{z^3};6{y^3};3{x^4}{z^2}\)

Vậy: \(\frac{2}{{15{x^3}{y^2}}} = \frac{{2\left( {4xy{z^3}} \right)}}{{15{x^3}{y^2}.4xy{z^3}}} = \frac{{8xy{z^3}}}{{60{x^4}{y^3}{z^3}}}\)

\(\frac{y}{{10{x^4}{z^3}}} = \frac{{y.6{y^3}}}{{10{x^4}{z^3}}} = \frac{{6{y^4}}}{{60{x^4}{y^3}{z^3}}}\)

\(\frac{x}{{20{y^3}z}} = \frac{{x.3{x^4}{z^2}}}{{20{y^3}z.3{x^4}{z^2}}} = \frac{{3{x^5}{z^2}}}{{60{x^4}{y^3}{z^3}}}\)

b) Ta có: \(2x + 6 = 2\left( {x + 3} \right);{x^2} - 9 = \left( {x + 3} \right)\left( {x - 3} \right)\)

Chọn MTC là: \(2\left( {{x^2} - 9} \right)\)

Nhân tử phụ của hai mẫu thức \(2x + 6;{x^2} - 9\) lần lượt là \(\left( {x - 3} \right);2\)

Vậy: \(\frac{x}{{2x + 6}} = \frac{{x\left( {x - 3} \right)}}{{2\left( {x + 3} \right)\left( {x - 3} \right)}} = \frac{{{x^2} - 3x}}{{2\left( {{x^2} - 9} \right)}}\)

\(\frac{4}{{{x^2} - 9}} = \frac{{4.2}}{{2\left( {x + 3} \right)\left( {x - 3} \right)}} = \frac{8}{{2\left( {{x^2} - 9} \right)}}\)

c) Ta có: \({x^3} - 1 = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\)

Chọn MTC là: \({x^3} - 1\)

Nhân tử phụ của hai mẫu thức \({x^3} - 1;{x^2} + x + 1\) lần lượt là: \(1;\left( {x - 1} \right)\)

Vậy: \(\frac{{2x}}{{{x^3} - 1}}\)

\(\frac{{x - 1}}{{{x^2} + x + 1}} = \frac{{\left( {x - 1} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{{{\left( {x - 1} \right)}^2}}}{{{x^3} - 1}}\)

d) Ta có: \(1 + 2x + {x^2} = {\left( {x + 1} \right)^2};5{x^2} - 5 = 5\left( {{x^2} - 1} \right) = 5\left( {x - 1} \right)\left( {x + 1} \right)\)

Chọn MTC là: \(5\left( {x - 1} \right){\left( {x + 1} \right)^2}\)

Nhân tử phụ của hai mẫu thức \(1 + 2x + {x^2};5{x^2} - 5\) lần lượt là: \(5\left( {x - 1} \right);x + 1\)

Vậy: \(\frac{x}{{1 + 2x + {x^2}}} = \frac{{x.5.\left( {x - 1} \right)}}{{5\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}} = \frac{{5x\left( {x - 1} \right)}}{{5\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}}\)

\(\frac{3}{{5{x^2} - 5}} = \frac{{3\left( {x + 1} \right)}}{{5\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}}\)

Vững vàng kiến thức, bứt phá điểm số Toán 8! Đừng bỏ lỡ Giải bài 6 trang 34 sách bài tập toán 8 - Cánh diều đặc sắc thuộc chuyên mục giải sgk toán 8 trên toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát từng chi tiết chương trình sách giáo khoa, con bạn sẽ củng cố kiến thức nền tảng vững chắc và dễ dàng chinh phục các dạng bài khó. Phương pháp học trực quan, logic sẽ giúp các em tối ưu hóa quá trình ôn luyện và đạt hiệu quả học tập tối đa!

Giải bài 6 trang 34 Sách bài tập Toán 8 - Cánh Diều: Tổng quan

Bài 6 trang 34 sách bài tập Toán 8 Cánh Diều thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình thang cân. Bài tập yêu cầu học sinh phải hiểu rõ các định nghĩa, định lý và tính chất liên quan để giải quyết các bài toán thực tế.

Nội dung bài tập 6 trang 34

Bài tập 6 trang 34 sách bài tập Toán 8 Cánh Diều thường bao gồm các dạng bài sau:

  • Dạng 1: Chứng minh một tứ giác là hình thang cân dựa trên các điều kiện cho trước.
  • Dạng 2: Tính độ dài các cạnh, đường cao, đường chéo của hình thang cân khi biết một số thông tin nhất định.
  • Dạng 3: Giải các bài toán thực tế liên quan đến hình thang cân, ví dụ như tính chiều cao của một tòa nhà dựa trên các góc đo và khoảng cách.

Hướng dẫn giải chi tiết bài 6 trang 34

Để giải bài 6 trang 34 sách bài tập Toán 8 Cánh Diều một cách hiệu quả, các em cần thực hiện theo các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho và các kết quả cần tìm.
  2. Vẽ hình: Vẽ hình minh họa bài toán, chú thích các điểm, đường thẳng và góc quan trọng.
  3. Phân tích bài toán: Xác định các mối quan hệ giữa các yếu tố trong hình, áp dụng các định lý và tính chất liên quan.
  4. Lập luận: Trình bày các bước giải một cách logic và rõ ràng, sử dụng các ký hiệu toán học chính xác.
  5. Kiểm tra lại kết quả: Đảm bảo rằng kết quả tìm được phù hợp với điều kiện của bài toán và có ý nghĩa thực tế.

Ví dụ minh họa giải bài 6 trang 34

Bài toán: Cho hình thang cân ABCD (AB // CD), AB = 5cm, CD = 10cm, AD = 6cm. Tính độ dài đường cao của hình thang.

Giải:

Kẻ AH và BK vuông góc với CD (H, K thuộc CD). Khi đó, AH = BK là đường cao của hình thang.

Vì ABCD là hình thang cân nên DH = KC = (CD - AB) / 2 = (10 - 5) / 2 = 2.5cm.

Áp dụng định lý Pitago vào tam giác ADH vuông tại H, ta có:

AH2 = AD2 - DH2 = 62 - 2.52 = 36 - 6.25 = 29.75

Suy ra, AH = √29.75 ≈ 5.45cm.

Vậy, đường cao của hình thang ABCD là khoảng 5.45cm.

Mẹo giải nhanh bài tập hình thang cân

Để giải nhanh các bài tập liên quan đến hình thang cân, các em có thể áp dụng một số mẹo sau:

  • Sử dụng các tính chất đặc trưng của hình thang cân, ví dụ như hai cạnh bên bằng nhau, hai góc kề một đáy bằng nhau.
  • Kẻ thêm các đường phụ để tạo ra các tam giác vuông hoặc các hình thang cân nhỏ hơn.
  • Áp dụng các định lý Pitago, định lý Thales và các công thức tính diện tích để giải quyết bài toán.

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về hình thang cân, các em nên luyện tập thêm các bài tập tương tự trong sách bài tập và các đề thi thử. Ngoài ra, các em có thể tham khảo các tài liệu học tập trực tuyến và các video hướng dẫn giải bài tập trên YouTube.

Kết luận

Bài 6 trang 34 sách bài tập Toán 8 Cánh Diều là một bài tập quan trọng giúp các em hiểu rõ hơn về các tính chất và ứng dụng của hình thang cân. Hy vọng rằng với hướng dẫn chi tiết và các ví dụ minh họa trong bài viết này, các em sẽ tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 8