Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8. Bài viết này sẽ hướng dẫn bạn giải bài 19 trang 57 sách bài tập Toán 8 Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.
Giá nước sinh hoạt của một hộ gia đình được tính như sau: \(10{m^3}\)
Đề bài
Giá nước sinh hoạt của một hộ gia đình được tính như sau: \(10{m^3}\) đầu tiên giá \(7000\) đồng/\({m^3}\); từ trên \(10{m^3}\) đến \(20{m^3}\) giá \(8200\) đồng/\({m^3}\); từ trên \(20{m^3}\) đến \(30{m^3}\) giá \(10000\) đồng/\({m^3}\); từ trên \(30{m^3}\) giá \(18\,000\) đồng/\({m^3}.\)
a) Viết công thức biểu thị số tiền \(y\) (đồng) mà nhà bạn Mai phải trả khi sử dụng \(x\,\left( {{m^3}} \right)\) trong tháng 12/2020 với \(x > 30.\) Hỏi \(y\) có phải hàm số bậc nhất của \(x\) hay không?
b) Nhà bạn Mai đã phải trả \(342\,000\) đồng cho tiền nước tháng 1/2023. Tính số mét khối nước nhà bạn Mai đã sử dụng trong tháng 1/2023, biết rằng số nước đó lớn hơn \(30{m^3}\).
Phương pháp giải - Xem chi tiết
a) Viết công thức biểu thị số tiền \(y\) (đồng) mà nhà bạn Mai phải trả khi sử dụng \(x\,\left( {{m^3}} \right)\) trong tháng 12/2020 với \(x > 30.\) Dựa vào định nghĩa hàm số để trả lời câu hỏi.
b) Tìm giá trị của \(x\) khi \(y = 342\,000\).
Lời giải chi tiết
a) \(y = 7\,000.10 + 8\,200.10 + \,10\,000.10 + 18\,000\left( {x - 30} \right)\)
\(y = 18\,000x - 288\,000\). Vậy \(y\) là hàm số của \(x\) vì với mỗi giá trị của \(x\) chỉ xác định đúng một giá trị của \(y.\)
b) Thay \(y = 342\,000\) vào hàm số \(y = 18\,000x - 288\,000\) ta được:
\(342\,000 = 18\,000x - 288\,000\) suy ra \(x = 35.\)
Vậy số mét khối nước nhà bạn Mai đã sử dụng trong tháng 1/2023 là \(35{m^3}.\)
Bài 19 trang 57 sách bài tập Toán 8 Cánh Diều thuộc chương trình học Toán 8, tập trung vào việc ôn tập và củng cố kiến thức về các dạng bài tập liên quan đến hình học, cụ thể là các tính chất của hình thang cân. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.
Bài 19 trang 57 sách bài tập Toán 8 Cánh Diều thường bao gồm các dạng bài tập sau:
Để giải bài 19 trang 57 sách bài tập Toán 8 Cánh Diều một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Bài toán: Cho hình thang cân ABCD (AB // CD), AB = 5cm, CD = 10cm, AD = BC = 6cm. Tính chiều cao của hình thang.
Giải:
Kẻ AH và BK vuông góc với CD (H, K thuộc CD). Khi đó, AH = BK = h (chiều cao của hình thang).
Ta có: DH = KC = (CD - AB)/2 = (10 - 5)/2 = 2.5cm.
Áp dụng định lý Pitago vào tam giác vuông ADH, ta có:
AD2 = AH2 + DH2
62 = h2 + 2.52
h2 = 36 - 6.25 = 29.75
h = √29.75 ≈ 5.45cm
Vậy chiều cao của hình thang là khoảng 5.45cm.
Khi giải bài tập về hình thang cân, bạn cần chú ý những điều sau:
Để củng cố kiến thức về bài 19 trang 57 sách bài tập Toán 8 Cánh Diều, bạn có thể tự giải các bài tập sau:
Bài 19 trang 57 sách bài tập Toán 8 Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về hình thang cân. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn đã có thể giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!