Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8. Bài viết này sẽ hướng dẫn bạn giải bài 30 trang 70 Sách bài tập Toán 8 Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.
Cho hình vuông \(ABCD\) cạnh bằng \(a\). Lấy điểm \(E\) thuộc cạnh \(BC\), điểm \(F\) thuộc cạnh \(AD\) sao cho \(CE=AF\). Các đường thẳng \(AE,BF\) cắt đường thẳng \(DC\) lần lượt tại \(M\) và \(N\).
Đề bài
Cho hình vuông \(ABCD\) cạnh bằng \(a\). Lấy điểm \(E\) thuộc cạnh \(BC\), điểm \(F\) thuộc cạnh \(AD\) sao cho \(CE=AF\). Các đường thẳng \(AE,BF\) cắt đường thẳng \(DC\) lần lượt tại \(M\) và \(N\). Các đường thẳng \(NA,MB\) cắt nhau tại \(K\).
a) Chứng minh: \(\Delta KAB\backsim \Delta KNM;\Delta CEM\backsim \Delta DAM;\Delta NFD\backsim \Delta NBC\).
b) So sánh \(CM.DN\) và \(A{{B}^{2}}\).
c) Các điểm \(E,F\) lấy ở vị trí nào trên các cạnh \(BC,AD\) thì \(MN\) có độ dài nhỏ nhất?
Phương pháp giải - Xem chi tiết
Dựa vào tính chất của hai tam giác đồng dạng:
- Mỗi tam giác đồng dạng với chính nó
Nếu \(\Delta A'B'C'\backsim \Delta ABC\) thì \(\Delta ABC\backsim \Delta A'B'C'\).
Nếu \(\Delta A''B''C''\backsim \Delta A'B'C'\) và \(\Delta A'B'C'\backsim \Delta ABC\) thì \(\widehat{A}=\widehat{A''},\widehat{B}=\widehat{B''},\widehat{C}=\widehat{C''}\).
- Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh thứ ba thì nó tạo thành một tam giác mới đồng dạng với tam giác đã cho.
Lời giải chi tiết
a) Vì \(AB//MN\) nên \(\Delta KAB\backsim \Delta KMN\).
Vì \(CE//AD\) nên \(\Delta CEM\backsim \Delta DAM\)
Vì \(DF//BC\) nên \(\Delta NFD\backsim \Delta NBC\).
b) Vì \(\Delta CEM\backsim \Delta BEA\) nên \(\frac{CM}{BA}=\frac{CE}{BE}\) (1)
Vì \(\Delta NDF\backsim \Delta BAF\) nên \(\frac{AF}{FD}=\frac{BA}{DN}\) (2)
Từ (1) và (2) và \(CE=AF,BE=DF\), ta có \(\frac{CM}{BA}=\frac{CE}{BE}=\frac{AF}{FD}=\frac{BA}{DN}\).
Do đó \(CM.DN=A{{B}^{2}}\).
c) Ta có \({{\left( CM-DN \right)}^{2}}\ge 0\), suy ra \({{\left( CM+DN \right)}^{2}}\ge 4CM.DN\) hay \(CM+DN\ge 2\sqrt{CM.DN}=2AB\). Do đó \(MN=DN+CD+CM\ge 3AB\) (vì \(AB=CD\)). Vậy \(MN\) có độ dài nhỏ nhất bằng \(3AB\). Dấu “=” xảy ra khi \(CM=DN=a\) hay \(E,F\) lần lượt là trung điểm của \(BC\) và \(AD\).
Bài 30 trang 70 Sách bài tập Toán 8 Cánh Diều thuộc chương trình học Toán 8, tập trung vào việc ôn tập và củng cố kiến thức về các dạng bài tập liên quan đến hình học, cụ thể là các kiến thức về tứ giác. Bài tập này yêu cầu học sinh vận dụng các định lý, tính chất đã học để giải quyết các vấn đề thực tế.
Bài 30 bao gồm một số câu hỏi và bài tập khác nhau, yêu cầu học sinh:
Để giải câu a, ta cần...
Kết luận: ...
Tương tự như câu a, để giải câu b, ta cần...
...
Trong bài 30, học sinh có thể gặp các dạng bài tập sau:
Để giải tốt các bài tập về tứ giác, bạn nên:
Để giúp bạn hiểu rõ hơn về cách giải bài tập về tứ giác, chúng ta cùng xem xét một ví dụ minh họa:
(Nội dung ví dụ minh họa - cần nội dung cụ thể)
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về tứ giác, bạn có thể tham khảo thêm các bài tập sau:
Hy vọng rằng với hướng dẫn chi tiết này, bạn đã có thể giải bài 30 trang 70 Sách bài tập Toán 8 Cánh Diều một cách dễ dàng và hiệu quả. Chúc bạn học tốt môn Toán!
Khái niệm | Định nghĩa |
---|---|
Tứ giác | Hình có bốn cạnh và bốn góc. |
Hình bình hành | Tứ giác có hai cặp cạnh đối song song. |
Hình chữ nhật | Hình bình hành có một góc vuông. |
Bảng tóm tắt các khái niệm quan trọng. |