Chào mừng các em học sinh đến với lời giải chi tiết bài 5 trang 33 sách bài tập Toán 8 Cánh Diều. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích rõ ràng từng bước để giúp các em hiểu bài và làm bài tập một cách hiệu quả.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp tài liệu học tập chất lượng và hỗ trợ giải đáp mọi thắc mắc.
Tính giá trị của biểu thức:
Đề bài
Tính giá trị của biểu thức:
a) \(A = \frac{{{x^5}{y^2}}}{{{{\left( {xy} \right)}^3}}}\) tại \(x = 1;y = 2\)
b) \(B = \frac{{ - 4\left( {x - 2} \right){x^2}}}{{20\left( {2 - x} \right){y^2}}}\) tại \(x = \frac{1}{2};y = \frac{1}{5}\).
c) \(C = \frac{{{x^2} - 8x + 7}}{{{x^2} - 1}}\) tại \(x = - 7\)
d) \(D = \frac{{5{x^2} - 10xy + 5{y^2}}}{{{x^2} - {y^1}}}\) tại \(x = 0,5;y = 0,6\).
Phương pháp giải - Xem chi tiết
Cho phân thức \(\frac{P}{Q}\). Giá trị của biểu thức \(\frac{P}{Q}\) tại những giá trị cho trước của các biến sao cho giá trị của mẫu thức khác 0 được gọi là giá trị của phân thức \(\frac{P}{Q}\) là những giá trị cho trước của các biến đó.
Lời giải chi tiết
a) Rút gọn biểu thức: \(A = \frac{{{x^5}{y^2}}}{{{{\left( {xy} \right)}^3}}} = \frac{{{x^5}{y^2}}}{{{x^3}{y^3}}} = \frac{{{x^2}}}{y}\)
ĐKXĐ: \({\left( {xy} \right)^3} \ne 0\)
Giá trị của \(A\) khi \(x = 1;y = 2\) là: \(\frac{{{1^2}}}{2} = \frac{1}{2}\)
b) Rút gọn biểu thức: \(B = \frac{{ - 4\left( {x - 2} \right){x^2}}}{{20\left( {2 - x} \right){y^2}}} = \frac{{ - 4. - \left( {2 - x} \right){x^2}}}{{20.\left( {2 - x} \right){y^2}}} = \frac{{{x^2}}}{{5{y^2}}}\)
ĐKXĐ: \(20\left( {2 - x} \right){y^2} \ne 0\)
Giá trị của \(A\) khi \(x = \frac{1}{2};y = \frac{1}{5}\) là: \(\frac{{{{\left( {\frac{1}{2}} \right)}^2}}}{{5.{{\left( {\frac{1}{5}} \right)}^2}}} = \frac{5}{4}\)
c) Rút gọn biểu thức: \(C = \frac{{{x^2} - 8x + 7}}{{{x^2} - 1}} = \frac{{\left( {x - 7} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{x - 7}}{{x + 1}}\)
ĐKXĐ: \({x^2} - 1 \ne 0\)
Giá trị của \(C\) khi \(x = - 7\) là: \(\frac{{\left( { - 7 - 7} \right)}}{{\left( { - 7 + 1} \right)}} = \frac{7}{3}\)
d) Rút gọn biểu thức: \(D = \frac{{5{x^2} - 10xy + 5{y^2}}}{{{x^2} - {y^2}}} = \frac{{5\left( {{x^2} - 2xy + {y^2}} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{5{{\left( {x - y} \right)}^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{5\left( {x - y} \right)}}{{\left( {x + y} \right)}}\)
ĐKXĐ: \({x^2} + {y^2} \ne 0\)
Giá trị của \(D\) khi \(x = 0,5;y = 0,6\) là: \(\frac{{5\left( {0,5 - 0,6} \right)}}{{\left( {0,5 + 0,6} \right)}} = - \frac{5}{{11}}\)
Bài 5 trang 33 sách bài tập Toán 8 Cánh Diều thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình bình hành, hình chữ nhật, hình thoi và hình vuông. Bài tập yêu cầu học sinh phải hiểu rõ các định nghĩa, định lý và biết cách áp dụng chúng vào giải quyết các bài toán thực tế.
Bài 5 bao gồm một số câu hỏi và bài tập khác nhau, yêu cầu học sinh:
Để giải câu a, ta cần áp dụng định lý về hình bình hành. Theo định lý, một tứ giác là hình bình hành khi và chỉ khi hai cặp cạnh đối song song. Do đó, ta cần chứng minh rằng hai cặp cạnh đối của tứ giác đã cho song song với nhau.
(Giải thích chi tiết các bước chứng minh, sử dụng hình vẽ minh họa nếu cần thiết)
Câu b yêu cầu tính độ dài đường chéo của hình chữ nhật. Ta có thể sử dụng định lý Pitago để tính độ dài đường chéo. Định lý Pitago khẳng định rằng trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương của hai cạnh góc vuông.
(Giải thích chi tiết các bước tính toán, sử dụng công thức và hình vẽ minh họa)
Câu c là một bài toán ứng dụng, yêu cầu học sinh vận dụng kiến thức về diện tích hình thoi để giải quyết. Diện tích hình thoi bằng nửa tích hai đường chéo.
(Giải thích chi tiết các bước giải, sử dụng công thức và hình vẽ minh họa)
Để hiểu sâu hơn về các kiến thức liên quan đến hình học, các em có thể tham khảo thêm các tài liệu sau:
Bài 5 trang 33 sách bài tập Toán 8 Cánh Diều là một bài tập quan trọng giúp các em củng cố kiến thức về hình học. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên đây, các em sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.
Hình | Tính chất |
---|---|
Hình bình hành | Hai cặp cạnh đối song song |
Hình chữ nhật | Có bốn góc vuông |
Hình thoi | Bốn cạnh bằng nhau |
Hình vuông | Có bốn cạnh bằng nhau và bốn góc vuông |