Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 25 trang 18 sách bài tập Toán 8 Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 25 trang 18 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Chứng minh biểu thức \(B = {x^5} - 15{x^2} - x + 5\) chia hết cho 5 với mọi số nguyên \(x\)
Đề bài
Chứng minh biểu thức \(B = {x^5} - 15{x^2} - x + 5\) chia hết cho 5 với mọi số nguyên \(x\)
Phương pháp giải - Xem chi tiết
Áp dụng các phương pháp phân tích đa thức thành nhân tử bằng cách nhóm số hạng và đặt nhân tử chung
Lời giải chi tiết
Trước hết, ta chứng minh \({x^5} - x \vdots 5\)
Ta có: \({x^5} - x = x\left( {{x^4} - 1} \right) = x\left( {{x^2} - 1} \right)\left( {{x^2} + 1} \right) = x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right)\)
Nếu \(x = 5k\) thì \(x \vdots 5\)
Khi đó \(x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right) \vdots 5\) hay \({x^5} - x \vdots 5\)
Nếu \(x = 5k + 1\) thì \(x - 1 = 5k \vdots 5\)
Khi đó \(x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right) \vdots 5\) hay \({x^2} - x \vdots 5\)
Nếu \(x = 5k + 2\) thì \({x^2} + 1 = {\left( {5k + 2} \right)^2} + 1 = 25{k^2} + 20k + 5 \vdots 5\)
Khi đó \(x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right) \vdots 5\) hay \({x^2} - x \vdots 5\)
Nếu \(x = 5k + 3\) thì \({x^2} + 1 = {\left( {5k + 3} \right)^2} + 1 = 25{k^2} + 30k + 10 \vdots 5\)
Khi đó \(x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right) \vdots 5\) hay \({x^2} - x \vdots 5\)
Nếu \(x = 5k + 4\) thì \(x + 1 = 5k + 5 \vdots 5\)
Khi đó \(x\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right) \vdots 5\) hay \({x^2} - x \vdots 5\)
Do đó \({x^5} - x \vdots 5\) với mọi số nguyên \(x\)
Ta có: \({x^5} - x \vdots 5;15{x^2} \vdots 5;5 \vdots 5\) nên \({x^5} - 15{x^2} - x + 5 \vdots 5\) với mọi số nguyên\(x\).
Vậy \(B\) chia hết cho 5 với mọi số nguyên \(x\).
Bài 25 trang 18 sách bài tập Toán 8 Cánh Diều thuộc chương trình học Toán 8, tập trung vào việc ôn tập và củng cố kiến thức về các dạng bài tập liên quan đến hình học, cụ thể là các tính chất của hình thang cân. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện tư duy logic và khả năng giải quyết vấn đề.
Bài 25 bao gồm một số câu hỏi và bài tập khác nhau, yêu cầu học sinh:
Đề bài: Cho hình thang cân ABCD (AB // CD). Gọi M là trung điểm của AD, N là trung điểm của BC. Chứng minh rằng MN là đường trung bình của hình thang.
Lời giải:
Đề bài: Cho hình thang cân ABCD (AB // CD). Gọi E là giao điểm của AD và BC. Chứng minh rằng EA = EB.
Lời giải:
Vì ABCD là hình thang cân nên AD = BC. Xét tam giác EAB và tam giác EDC, ta có:
Do đó, tam giác EAB đồng dạng với tam giác EDC (g.g). Suy ra EA/ED = EB/EC. Mà AD = BC nên ED = EA và EC = EB. Vậy EA = EB.
Đề bài: Cho hình thang cân ABCD (AB // CD). Kẻ đường cao AH và BK (H, K thuộc CD). Chứng minh rằng DH = KC.
Lời giải:
Vì ABCD là hình thang cân nên ∠D = ∠C. Xét tam giác vuông ADH và tam giác vuông BCK, ta có:
Do đó, tam giác ADH đồng dạng với tam giác BCK (cạnh huyền - góc nhọn). Suy ra DH = KC.
Bài 25 trang 18 sách bài tập Toán 8 Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về hình thang cân. Hy vọng với lời giải chi tiết và các hướng dẫn trên, bạn đã hiểu rõ cách giải bài tập này và tự tin hơn trong các bài kiểm tra. Chúc bạn học tốt!