Logo Header
  1. Môn Toán
  2. Giải bài 71 trang 85 sách bài tập toán 8 – Cánh diều

Giải bài 71 trang 85 sách bài tập toán 8 – Cánh diều

Giải bài 71 trang 85 Sách bài tập Toán 8 Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8. Bài viết này sẽ hướng dẫn bạn cách giải bài 71 trang 85 sách bài tập Toán 8 Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.

Cho hình thang \(ABCD\), \(AB//CD\), \(\widehat{DAB}=\widehat{DBC},\frac{AB}{BD}=\frac{2}{5}\). Tính diện tích tam giác \(BDC\), biết diện tích tam giác \(ABD\) là \(44,8c{{m}^{2}}\).

Đề bài

Cho hình thang \(ABCD\), \(AB//CD\), \(\widehat{DAB}=\widehat{DBC},\frac{AB}{BD}=\frac{2}{5}\). Tính diện tích tam giác \(BDC\), biết diện tích tam giác \(ABD\) là \(44,8c{{m}^{2}}\).

Phương pháp giải - Xem chi tiếtGiải bài 71 trang 85 sách bài tập toán 8 – Cánh diều 1

Tam giác \(A'B'C'\) gọi là đồng dạng với tam giác \(ABC\) nếu:

\(\widehat{A'}=\widehat{A},\widehat{B'}=\widehat{B},\widehat{C'}=\widehat{C}\) ; \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{A'C'}{AC}\).

Kí hiệu là \(\Delta A'B'C'\backsim \Delta ABC\).

Tỉ số các cạnh tương ứng \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}=k\) gọi là tỉ số đồng dạng.

Lời giải chi tiết

Giải bài 71 trang 85 sách bài tập toán 8 – Cánh diều 2

Có \(\Delta ABD\backsim \Delta BDC\) do \(\widehat{DAB}=\widehat{DBC}\); \(\widehat{ABD}=\widehat{BDC}\). Do đó, tỉ số diện tích tam giác \(ABD\) và diện tích tam giác \(BDC\) bằng bình phương của tỉ số đồng dạng.

Suy ra diện tích tam giác \(ABD\) (kí hiệu là \({{S}_{\Delta ABD}}\)) bằng \(\frac{4}{25}\) diện tích tam giác \(BDC\) (kí hiệu là \({{S}_{\Delta BDC}}\)) hay \({{S}_{\Delta ABD}}=\frac{4}{25}.{{S}_{\Delta BDC}}\).

Do đó: \(44,8=\frac{4}{25}.{{S}_{\Delta BDC}}\) hay \({{S}_{\Delta BCD}}=44,8:\frac{4}{25}=11,2.25=280\left( c{{m}^{2}} \right)\).

Vững vàng kiến thức, bứt phá điểm số Toán 8! Đừng bỏ lỡ Giải bài 71 trang 85 sách bài tập toán 8 – Cánh diều đặc sắc thuộc chuyên mục vở bài tập toán 8 trên học toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát từng chi tiết chương trình sách giáo khoa, con bạn sẽ củng cố kiến thức nền tảng vững chắc và dễ dàng chinh phục các dạng bài khó. Phương pháp học trực quan, logic sẽ giúp các em tối ưu hóa quá trình ôn luyện và đạt hiệu quả học tập tối đa!

Giải bài 71 trang 85 Sách bài tập Toán 8 Cánh Diều: Tổng quan

Bài 71 trang 85 sách bài tập Toán 8 Cánh Diều thuộc chương trình học Toán 8, tập trung vào việc ôn tập và củng cố kiến thức về các dạng bài tập liên quan đến hình học, cụ thể là các tính chất của hình thang cân. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.

Nội dung bài tập 71 trang 85 Sách bài tập Toán 8 Cánh Diều

Bài 71 trang 85 sách bài tập Toán 8 Cánh Diều thường bao gồm các dạng bài tập sau:

  • Bài tập 1: Chứng minh một hình thang cân có các tính chất đặc biệt (ví dụ: hai đường chéo bằng nhau, hai góc kề một đáy bằng nhau).
  • Bài tập 2: Tính độ dài các cạnh, đường cao, đường trung bình của hình thang cân khi biết một số thông tin nhất định.
  • Bài tập 3: Giải các bài toán thực tế liên quan đến hình thang cân (ví dụ: tính chiều cao của một tòa nhà dựa vào bóng của nó và góc tạo bởi tia nắng mặt trời).

Hướng dẫn giải bài 71 trang 85 Sách bài tập Toán 8 Cánh Diều

Để giải bài 71 trang 85 sách bài tập Toán 8 Cánh Diều một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Định nghĩa hình thang cân: Hình thang cân là hình thang có hai cạnh bên song song.
  2. Tính chất của hình thang cân:
    • Hai góc kề một đáy bằng nhau.
    • Hai đường chéo bằng nhau.
    • Đường trung bình của hình thang cân bằng nửa tổng hai đáy.
  3. Các công thức tính diện tích hình thang: S = (a + b)h/2 (trong đó a, b là độ dài hai đáy, h là chiều cao).

Ví dụ minh họa giải bài 71 trang 85 Sách bài tập Toán 8 Cánh Diều

Ví dụ: Cho hình thang cân ABCD (AB // CD), AB = 5cm, CD = 10cm, AD = 6cm. Tính chiều cao của hình thang.

Giải:

Kẻ AH và BK vuông góc với CD (H, K thuộc CD). Khi đó, AH = BK = h (chiều cao của hình thang).

Ta có: HK = CD - AB = 10 - 5 = 5cm.

Vì ABCD là hình thang cân nên DH = KC = HK/2 = 5/2 = 2.5cm.

Áp dụng định lý Pitago vào tam giác ADH vuông tại H, ta có:

AD2 = AH2 + DH2

62 = h2 + 2.52

h2 = 36 - 6.25 = 29.75

h = √29.75 ≈ 5.45cm

Vậy chiều cao của hình thang là khoảng 5.45cm.

Lưu ý khi giải bài tập về hình thang cân

Khi giải bài tập về hình thang cân, bạn cần chú ý các điểm sau:

  • Vẽ hình chính xác và đầy đủ các yếu tố của bài toán.
  • Sử dụng các tính chất của hình thang cân để giải quyết bài toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Tổng kết

Bài 71 trang 85 sách bài tập Toán 8 Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về hình thang cân. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Khái niệmMô tả
Hình thang cânHình thang có hai cạnh bên bằng nhau.
Đường trung bình của hình thangĐoạn thẳng nối trung điểm của hai cạnh bên.

Tài liệu, đề thi và đáp án Toán 8