Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8. Bài viết này sẽ hướng dẫn bạn cách giải bài 71 trang 85 sách bài tập Toán 8 Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.
Cho hình thang \(ABCD\), \(AB//CD\), \(\widehat{DAB}=\widehat{DBC},\frac{AB}{BD}=\frac{2}{5}\). Tính diện tích tam giác \(BDC\), biết diện tích tam giác \(ABD\) là \(44,8c{{m}^{2}}\).
Đề bài
Cho hình thang \(ABCD\), \(AB//CD\), \(\widehat{DAB}=\widehat{DBC},\frac{AB}{BD}=\frac{2}{5}\). Tính diện tích tam giác \(BDC\), biết diện tích tam giác \(ABD\) là \(44,8c{{m}^{2}}\).
Phương pháp giải - Xem chi tiết
Tam giác \(A'B'C'\) gọi là đồng dạng với tam giác \(ABC\) nếu:
\(\widehat{A'}=\widehat{A},\widehat{B'}=\widehat{B},\widehat{C'}=\widehat{C}\) ; \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{A'C'}{AC}\).
Kí hiệu là \(\Delta A'B'C'\backsim \Delta ABC\).
Tỉ số các cạnh tương ứng \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}=k\) gọi là tỉ số đồng dạng.
Lời giải chi tiết
Có \(\Delta ABD\backsim \Delta BDC\) do \(\widehat{DAB}=\widehat{DBC}\); \(\widehat{ABD}=\widehat{BDC}\). Do đó, tỉ số diện tích tam giác \(ABD\) và diện tích tam giác \(BDC\) bằng bình phương của tỉ số đồng dạng.
Suy ra diện tích tam giác \(ABD\) (kí hiệu là \({{S}_{\Delta ABD}}\)) bằng \(\frac{4}{25}\) diện tích tam giác \(BDC\) (kí hiệu là \({{S}_{\Delta BDC}}\)) hay \({{S}_{\Delta ABD}}=\frac{4}{25}.{{S}_{\Delta BDC}}\).
Do đó: \(44,8=\frac{4}{25}.{{S}_{\Delta BDC}}\) hay \({{S}_{\Delta BCD}}=44,8:\frac{4}{25}=11,2.25=280\left( c{{m}^{2}} \right)\).
Bài 71 trang 85 sách bài tập Toán 8 Cánh Diều thuộc chương trình học Toán 8, tập trung vào việc ôn tập và củng cố kiến thức về các dạng bài tập liên quan đến hình học, cụ thể là các tính chất của hình thang cân. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.
Bài 71 trang 85 sách bài tập Toán 8 Cánh Diều thường bao gồm các dạng bài tập sau:
Để giải bài 71 trang 85 sách bài tập Toán 8 Cánh Diều một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Ví dụ: Cho hình thang cân ABCD (AB // CD), AB = 5cm, CD = 10cm, AD = 6cm. Tính chiều cao của hình thang.
Giải:
Kẻ AH và BK vuông góc với CD (H, K thuộc CD). Khi đó, AH = BK = h (chiều cao của hình thang).
Ta có: HK = CD - AB = 10 - 5 = 5cm.
Vì ABCD là hình thang cân nên DH = KC = HK/2 = 5/2 = 2.5cm.
Áp dụng định lý Pitago vào tam giác ADH vuông tại H, ta có:
AD2 = AH2 + DH2
62 = h2 + 2.52
h2 = 36 - 6.25 = 29.75
h = √29.75 ≈ 5.45cm
Vậy chiều cao của hình thang là khoảng 5.45cm.
Khi giải bài tập về hình thang cân, bạn cần chú ý các điểm sau:
Bài 71 trang 85 sách bài tập Toán 8 Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về hình thang cân. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!
Khái niệm | Mô tả |
---|---|
Hình thang cân | Hình thang có hai cạnh bên bằng nhau. |
Đường trung bình của hình thang | Đoạn thẳng nối trung điểm của hai cạnh bên. |