Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8. Bài viết này sẽ hướng dẫn bạn cách giải bài 24 trang 18 trong sách bài tập Toán 8 Cánh Diều, giúp bạn nắm vững kiến thức và tự tin hơn trong học tập.
Chúng tôi luôn cố gắng cung cấp những giải pháp tối ưu, giúp bạn hiểu rõ bản chất của bài toán và áp dụng vào các bài tập tương tự.
Tính giá trị của mỗi biểu thức sau:
Đề bài
Tính giá trị của mỗi biểu thức sau:
a) \(A = {x^2} + xy + \frac{{{y^2}}}{4}\) biết \(x + \frac{y}{2} = 100\)
b) \(B = 25{x^2}z - 10xyz + {y^2}z\) biết \(5x - y = - 20\) và \(z = - 5\)
c) \(C = {x^3}yz + 3{x^2}{y^2}z + 3x{y^3}z + {y^4}z\) biết \(x + y = - 0,5\) và \(yz = 8\)
Phương pháp giải - Xem chi tiết
Ta có thể phân tích đa thức thành nhân tử bằng cách vận dụng trực tiếp hằng đẳng thức hoặc bằng cách vận dụng hằng đẳng thức thông qua nhóm số hạng và đặt nhân tử chung.
Lời giải chi tiết
a) Ta có:
\(A = {x^2} + xy + \frac{{{y^2}}}{4} = {x^2} + 2x.\frac{y}{2} + {\left( {\frac{y}{2}} \right)^2} = {\left( {x + \frac{y}{2}} \right)^2}\)
Do \(x + \frac{y}{2} = 100\) nên \(A = {100^2} = 10000\)
b) Ta có:
\(B = 25{x^2}z - 10xyz + {y^2}z = z\left( {25{x^2} - 10xy + {y^2}} \right) = z{\left( {5x - y} \right)^2}\)
Do \(5x - y = - 20\) và \(z = - 5\) nên \(B = - 5{\left( { - 20} \right)^2} = - 2000\)
c) Ta có:
\(\begin{array}{l}C = {x^3}yz + 3{x^2}{y^2}z + 3x{y^3}z + {y^4}z\\ = yz\left( {{x^3} + 3{x^2}y + 3x{y^2} + {y^3}} \right)\\ = yz{\left( {x + y} \right)^3}\end{array}\)
Do \(x + y = - 0,5\) và \(yz = 8\) nên \(C = 8{\left( { - 0,5} \right)^3} = - 1\)
Bài 24 trang 18 Sách bài tập Toán 8 Cánh Diều thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình thang cân. Bài tập này yêu cầu học sinh phải hiểu rõ các định nghĩa, định lý liên quan đến hình thang cân để giải quyết một cách chính xác.
Bài 24 thường bao gồm các dạng bài tập sau:
Để giải bài 24 trang 18 Sách bài tập Toán 8 Cánh Diều một cách hiệu quả, bạn cần:
Bài 24 (trang 18 SBT Toán 8 Cánh Diều): Cho hình thang cân ABCD (AB // CD). Gọi E là giao điểm của AD và BC. Chứng minh rằng EA = EB.
Lời giải:
Vì ABCD là hình thang cân nên AD = BC. Xét tam giác EAB và tam giác EDC, ta có:
Do đó, tam giác EAB đồng dạng với tam giác EDC (g-g). Suy ra: EA/ED = EB/EC = AB/CD. Vì AD = BC nên EA + ED = EB + EC. Từ EA/ED = EB/EC suy ra EA/EB = ED/EC. Do đó, EA = EB.
Khi giải các bài tập về hình thang cân, bạn cần lưu ý:
Để củng cố kiến thức về hình thang cân, bạn có thể luyện tập thêm các bài tập tương tự trong sách bài tập Toán 8 Cánh Diều hoặc các nguồn tài liệu khác. Việc luyện tập thường xuyên sẽ giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Bài 24 trang 18 Sách bài tập Toán 8 Cánh Diều là một bài tập quan trọng giúp bạn hiểu rõ hơn về các tính chất của hình thang cân. Hy vọng với hướng dẫn chi tiết này, bạn đã có thể giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!