Logo Header
  1. Môn Toán
  2. Giải bài 26 trang 62 sách bài tập toán 8 - Cánh diều

Giải bài 26 trang 62 sách bài tập toán 8 - Cánh diều

Giải bài 26 trang 62 Sách bài tập Toán 8 Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8. Bài viết này sẽ hướng dẫn bạn giải bài 26 trang 62 sách bài tập Toán 8 Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.

Một thiết bị tiệt khuẩn y tế bằng năng lượng mặt trời được mua với giá 60 triệu đồng

Đề bài

Một thiết bị tiệt khuẩn y tế bằng năng lượng mặt trời được mua với giá 60 triệu đồng, mỗi năm thiết bị tiệt khuẩn đó đều khấu hao \(k\) (triệu đồng) với \(0 < k < 60\). Gọi \(y\) (triệu đồng) là giá của thiết bị tiệt khuẩn đó sau \(x\) năm sử dụng.

a) Chứng tỏ rẳng \(y\) là hàm số bậc nhất của \(x\), tức là \(y = ax + b\left( {a \ne 0} \right)\).

b) Trong Hình 10, tia \(At\) là một phần của đường thẳng \(y = ax + b\). Tìm \(a,b\). Từ đó, cho biết sau 12 năm sử dụng thì giá của thiết bị tiệt khuẩn đó bằng bao nhiêu phần trăm so với giá mua ban đầu.

Giải bài 26 trang 62 sách bài tập toán 8 - Cánh diều 1

Phương pháp giải - Xem chi tiếtGiải bài 26 trang 62 sách bài tập toán 8 - Cánh diều 2

Dựa vào đồ thi của hàm số bậc nhất để tính tỉ số phần trăm giữa giá của thiết bị tiệt khuẩn đó sau 12 năm sử dụng và giá mua ban đầu.

Lời giải chi tiết

a) Công thức biểu thị giá của thiết bị tiệt khuẩn đó sau \(x\) năm sử dụng là: \(y = 60 - kx\) hay \(y = - kx + 60\). Mà \(k \ne 0\), suy ra \(y\) là hàm số bậc nhất của \(x\).

b) Từ câu a, ta có \(b = 60\). Do đường thẳng \(y = ax + b\) đi qua điểm \(B\left( {10;30} \right)\) nên \(30 = a.10 + 60\). Suy ra \(a = - 3\). Khi đó, đường thẳng cần tìm là: \(y = - 3x + 60\).

Giá của thiết bị tiệt khuẩn đó sau 12 năm sử dụng là:

\( - 3.12 + 60 = 24\) (triệu đồng)

Tỉ số phần trăm giữa giá của thiết bị tiệt khuẩn đó sau 12 năm sử dụng và giá mua ban đầu là: \(\frac{{24.100}}{{60}}\% = 40\% \).

Vậy sau 12 năm sử dụng thì giá của thiết bị tiệt khuẩn đó bằng \(40\% \) so với giá mua ban đầu.

Vững vàng kiến thức, bứt phá điểm số Toán 8! Đừng bỏ lỡ Giải bài 26 trang 62 sách bài tập toán 8 - Cánh diều đặc sắc thuộc chuyên mục bài tập sách giáo khoa toán 8 trên toán math. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát từng chi tiết chương trình sách giáo khoa, con bạn sẽ củng cố kiến thức nền tảng vững chắc và dễ dàng chinh phục các dạng bài khó. Phương pháp học trực quan, logic sẽ giúp các em tối ưu hóa quá trình ôn luyện và đạt hiệu quả học tập tối đa!

Giải bài 26 trang 62 Sách bài tập Toán 8 Cánh Diều: Tổng quan

Bài 26 trang 62 sách bài tập Toán 8 Cánh Diều thuộc chương trình học Toán 8, tập trung vào việc ôn tập và củng cố kiến thức về các dạng bài tập liên quan đến hình học, cụ thể là các tính chất của hình thang cân. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.

Nội dung bài tập

Bài 26 trang 62 sách bài tập Toán 8 Cánh Diều thường bao gồm các dạng bài tập sau:

  • Bài tập 1: Chứng minh một hình thang cân có các tính chất đặc biệt.
  • Bài tập 2: Tính độ dài các cạnh, đường cao của hình thang cân khi biết một số thông tin nhất định.
  • Bài tập 3: Giải các bài toán thực tế liên quan đến hình thang cân.

Hướng dẫn giải chi tiết

Để giải bài 26 trang 62 sách bài tập Toán 8 Cánh Diều một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Định nghĩa hình thang cân: Hình thang cân là hình thang có hai cạnh đáy song song và hai cạnh bên bằng nhau.
  2. Tính chất của hình thang cân:
    • Hai góc kề một đáy bằng nhau.
    • Hai đường chéo bằng nhau.
    • Tổng hai góc kề một cạnh bên bằng 180 độ.
  3. Các công thức tính toán:
    • Diện tích hình thang: S = (a + b)h/2 (trong đó a, b là độ dài hai đáy, h là đường cao).
    • Độ dài đường trung bình của hình thang: m = (a + b)/2.

Ví dụ minh họa

Bài toán: Cho hình thang cân ABCD (AB // CD), AB = 5cm, CD = 10cm, AD = BC = 6cm. Tính chiều cao của hình thang.

Giải:

Kẻ AH và BK vuông góc với CD (H, K thuộc CD). Khi đó, AH = BK = h (chiều cao của hình thang).

Ta có: DH = KC = (CD - AB)/2 = (10 - 5)/2 = 2.5cm.

Áp dụng định lý Pitago vào tam giác vuông ADH, ta có:

AD2 = AH2 + DH2

62 = h2 + 2.52

h2 = 36 - 6.25 = 29.75

h = √29.75 ≈ 5.45cm

Vậy chiều cao của hình thang là khoảng 5.45cm.

Lưu ý khi giải bài tập

Khi giải bài tập về hình thang cân, bạn cần chú ý những điều sau:

  • Vẽ hình chính xác và đầy đủ các yếu tố của bài toán.
  • Nắm vững các định nghĩa, tính chất và công thức liên quan đến hình thang cân.
  • Sử dụng các định lý, tính chất đã học để chứng minh các mối quan hệ giữa các yếu tố của hình.
  • Kiểm tra lại kết quả sau khi giải xong bài toán.

Bài tập luyện tập

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về hình thang cân, bạn có thể tham khảo các bài tập sau:

  • Bài 27 trang 62 sách bài tập Toán 8 Cánh Diều.
  • Bài 28 trang 62 sách bài tập Toán 8 Cánh Diều.
  • Các bài tập tương tự trên các trang web học toán online.

Kết luận

Hy vọng rằng với hướng dẫn chi tiết này, bạn đã có thể giải bài 26 trang 62 sách bài tập Toán 8 Cánh Diều một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 8