Logo Header
  1. Môn Toán
  2. Giải bài 33 trang 50 sách bài tập toán 8 – Cánh diều

Giải bài 33 trang 50 sách bài tập toán 8 – Cánh diều

Giải bài 33 trang 50 Sách bài tập Toán 8 Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8. Bài viết này sẽ hướng dẫn bạn giải bài 33 trang 50 Sách bài tập Toán 8 Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.

Diện tích hình thang bằng 140 \(c{m^2}\), chiều cao bằng 8 cm. Tìm độ dài hai cạnh đáy biết chúng hơn kém nhau 15 cm.

Đề bài

Diện tích hình thang bằng 140 \(c{m^2}\), chiều cao bằng 8 cm. Tìm độ dài hai cạnh đáy biết chúng hơn kém nhau 15 cm.

Phương pháp giải - Xem chi tiếtGiải bài 33 trang 50 sách bài tập toán 8 – Cánh diều 1

Các bước giải bài toán bằng cách lập phương trình

Bước 1: Lập phương trình

- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số

- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết

- Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2: Giải phương trình

Bước 3: Kết luận

- Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn, nghiệm nào không thỏa mãn điều kiện của ẩn

- Đưa ra câu trả lời cho bài toán.

Lời giải chi tiết

Gọi độ dài đáy nhỏ là \(x\) (cm), \(x > 0\). Khi đó, độ dài đáy lớn là \(x + 15\) (cm)

Vì diện tích hình thang bằng 140 \(c{m^2}\), chiều cao bằng 8 cm nên ta có phương trình:

\(\begin{array}{l}\left[ {\left( {x + x + 15} \right).8} \right]:2 = 140\\ \Leftrightarrow 2x + 15 = 35\\ \Leftrightarrow 2x = 20\\ \Leftrightarrow x = 10\left( {tmdk} \right)\end{array}\)

Vậy độ dài đáy nhỏ là 10 cm, độ dài đáy lớn là \(10 + 15 = 25\) cm.

Vững vàng kiến thức, bứt phá điểm số Toán 8! Đừng bỏ lỡ Giải bài 33 trang 50 sách bài tập toán 8 – Cánh diều đặc sắc thuộc chuyên mục sgk toán 8 trên toán học. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát từng chi tiết chương trình sách giáo khoa, con bạn sẽ củng cố kiến thức nền tảng vững chắc và dễ dàng chinh phục các dạng bài khó. Phương pháp học trực quan, logic sẽ giúp các em tối ưu hóa quá trình ôn luyện và đạt hiệu quả học tập tối đa!

Giải bài 33 trang 50 Sách bài tập Toán 8 Cánh Diều: Tổng quan

Bài 33 trang 50 Sách bài tập Toán 8 Cánh Diều thuộc chương trình học Toán 8, tập trung vào việc ôn tập và củng cố kiến thức về các dạng bài tập liên quan đến hình học, cụ thể là các tính chất của hình thang cân. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các vấn đề thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.

Nội dung bài tập

Bài 33 trang 50 Sách bài tập Toán 8 Cánh Diều thường bao gồm các dạng bài tập sau:

  • Bài tập 1: Tính các cạnh và đường cao của hình thang cân khi biết các yếu tố liên quan.
  • Bài tập 2: Chứng minh một tứ giác là hình thang cân dựa trên các điều kiện cho trước.
  • Bài tập 3: Giải các bài toán thực tế liên quan đến hình thang cân, ví dụ như tính chiều cao của một tòa nhà hoặc chiều rộng của một con sông.

Hướng dẫn giải chi tiết

Để giải bài 33 trang 50 Sách bài tập Toán 8 Cánh Diều một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Định nghĩa hình thang cân: Hình thang cân là hình thang có hai cạnh bên song song.
  2. Tính chất của hình thang cân:
    • Hai góc kề một cạnh bên bằng nhau.
    • Hai đường chéo bằng nhau.
    • Tổng hai góc kề một cạnh bên bằng 180 độ.
  3. Các công thức tính diện tích hình thang cân: S = (a + b)h/2, trong đó a và b là độ dài hai đáy, h là đường cao.

Ví dụ minh họa

Bài toán: Cho hình thang cân ABCD (AB // CD), AB = 6cm, CD = 10cm, AD = 5cm. Tính đường cao của hình thang.

Giải:

Kẻ AH và BK vuông góc với CD (H, K thuộc CD). Khi đó, AH = BK = h (đường cao của hình thang).

Ta có: HK = AB = 6cm.

Suy ra: DH = KC = (CD - HK)/2 = (10 - 6)/2 = 2cm.

Áp dụng định lý Pitago vào tam giác vuông ADH, ta có:

AD2 = AH2 + DH2

52 = h2 + 22

h2 = 25 - 4 = 21

h = √21 cm

Vậy, đường cao của hình thang là √21 cm.

Mẹo giải nhanh

Để giải nhanh các bài tập về hình thang cân, bạn nên:

  • Vẽ hình chính xác và đầy đủ các yếu tố đã cho.
  • Sử dụng các tính chất của hình thang cân để tìm ra mối liên hệ giữa các yếu tố.
  • Áp dụng các công thức tính toán một cách linh hoạt.

Luyện tập thêm

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, bạn có thể tham khảo thêm các bài tập tương tự trong Sách bài tập Toán 8 Cánh Diều hoặc trên các trang web học toán online khác.

Kết luận

Bài 33 trang 50 Sách bài tập Toán 8 Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về hình thang cân. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, bạn đã có thể giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 8