Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8. Bài viết này sẽ hướng dẫn bạn giải bài 33 trang 50 Sách bài tập Toán 8 Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.
Diện tích hình thang bằng 140 \(c{m^2}\), chiều cao bằng 8 cm. Tìm độ dài hai cạnh đáy biết chúng hơn kém nhau 15 cm.
Đề bài
Diện tích hình thang bằng 140 \(c{m^2}\), chiều cao bằng 8 cm. Tìm độ dài hai cạnh đáy biết chúng hơn kém nhau 15 cm.
Phương pháp giải - Xem chi tiết
Các bước giải bài toán bằng cách lập phương trình
Bước 1: Lập phương trình
- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số
- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết
- Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2: Giải phương trình
Bước 3: Kết luận
- Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn, nghiệm nào không thỏa mãn điều kiện của ẩn
- Đưa ra câu trả lời cho bài toán.
Lời giải chi tiết
Gọi độ dài đáy nhỏ là \(x\) (cm), \(x > 0\). Khi đó, độ dài đáy lớn là \(x + 15\) (cm)
Vì diện tích hình thang bằng 140 \(c{m^2}\), chiều cao bằng 8 cm nên ta có phương trình:
\(\begin{array}{l}\left[ {\left( {x + x + 15} \right).8} \right]:2 = 140\\ \Leftrightarrow 2x + 15 = 35\\ \Leftrightarrow 2x = 20\\ \Leftrightarrow x = 10\left( {tmdk} \right)\end{array}\)
Vậy độ dài đáy nhỏ là 10 cm, độ dài đáy lớn là \(10 + 15 = 25\) cm.
Bài 33 trang 50 Sách bài tập Toán 8 Cánh Diều thuộc chương trình học Toán 8, tập trung vào việc ôn tập và củng cố kiến thức về các dạng bài tập liên quan đến hình học, cụ thể là các tính chất của hình thang cân. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các vấn đề thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.
Bài 33 trang 50 Sách bài tập Toán 8 Cánh Diều thường bao gồm các dạng bài tập sau:
Để giải bài 33 trang 50 Sách bài tập Toán 8 Cánh Diều một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Bài toán: Cho hình thang cân ABCD (AB // CD), AB = 6cm, CD = 10cm, AD = 5cm. Tính đường cao của hình thang.
Giải:
Kẻ AH và BK vuông góc với CD (H, K thuộc CD). Khi đó, AH = BK = h (đường cao của hình thang).
Ta có: HK = AB = 6cm.
Suy ra: DH = KC = (CD - HK)/2 = (10 - 6)/2 = 2cm.
Áp dụng định lý Pitago vào tam giác vuông ADH, ta có:
AD2 = AH2 + DH2
52 = h2 + 22
h2 = 25 - 4 = 21
h = √21 cm
Vậy, đường cao của hình thang là √21 cm.
Để giải nhanh các bài tập về hình thang cân, bạn nên:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, bạn có thể tham khảo thêm các bài tập tương tự trong Sách bài tập Toán 8 Cánh Diều hoặc trên các trang web học toán online khác.
Bài 33 trang 50 Sách bài tập Toán 8 Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về hình thang cân. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, bạn đã có thể giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!