Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8 sách Cánh Diều. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 26 trang 42, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.
Hai ca nô cùng xuất phát đi xuôi dòng từ bến (A) đến bến (B) dài 24 km.
Đề bài
Hai ca nô cùng xuất phát đi xuôi dòng từ bến \(A\) đến bến \(B\) dài 24 km. Ca nô thứ nhất đến bến \(B\) trước và quay trở lại thì gặp ca nô thứ hai tại vị trí \(C\) cách bến \(A\) là 8 km. Biết tốc độ của dòng nước là 4 km/h. Gọi \(x\) (km/h) là tốc độ của ca nô thứ nhất \(\left( {x > 4} \right)\). Viết phân thức biểu thị theo \(x\).
a) Thời gian ca nô thứ nhất đi từ bến \(A\) đến bến \(B\).
b) Thời gian ca nô thứ nhất đi từ bến \(B\) đến vị trí \(C\).
c) Tổng thời gian ca nô thứ nhất đi từ bến \(A\) đến bến \(B\) và từ bến \(B\) đến vị trí \(C\).
Phương pháp giải - Xem chi tiết
Áp dụng phương pháp thực hiện phép cộng phân thức đại số để tính tổng thời gian ca nô thứ nhất đi từ bến \(A\) đến bến \(B\) và từ bến \(B\) đến vị trí \(C\).
Lời giải chi tiết
a) Vận tốc của ca nô thứ nhất đi xuôi dòng là: \(x + 4\)(km/h)
Thời gian ca nô thứ nhất đi từ bến \(A\) đến bến \(B\) là: \(\frac{{24}}{{x + 4}}\) (giờ)
b) Vận tốc của ca nô thứ nhất đi ngược dòng là: \(x - 4\) (km/h)
Thời gian ca nô thứ nhất đi từ bến \(B\) đến vị trí \(C\) là: \(\frac{{16}}{{x - 4}}\) (giờ)
c) Tổng thời gian ca nô thứ nhất đi từ bến \(A\) đến bến \(B\) và từ bến \(B\) đến vị trí \(C\) là:
\(\frac{{24}}{{x + 4}} + \frac{{16}}{{x - 4}} = \frac{{24\left( {x - 4} \right) + 16\left( {x + 4} \right)}}{{{x^2} - 16}} = \frac{{24x - 96 + 16x + 64}}{{{x^2} - 16}} = \frac{{40x - 32}}{{{x^2} - 16}}\)
Bài 26 trang 42 sách bài tập Toán 8 Cánh Diều thuộc chương trình học về hình học, cụ thể là các kiến thức liên quan đến tứ giác. Bài tập này thường yêu cầu học sinh vận dụng các định lý, tính chất đã học để chứng minh một tứ giác là hình gì (hình bình hành, hình chữ nhật, hình thoi, hình vuông) hoặc tính toán các yếu tố liên quan đến tứ giác đó (góc, cạnh, đường chéo).
Bài 26 thường bao gồm một số câu hỏi nhỏ, mỗi câu hỏi yêu cầu học sinh thực hiện một thao tác cụ thể. Các câu hỏi có thể liên quan đến:
Để giải tốt các bài tập về tứ giác, học sinh cần nắm vững các kiến thức sau:
(Giả sử bài 26 có nội dung: Cho hình bình hành ABCD, gọi E là trung điểm của AB. Gọi F là giao điểm của DE và AC. Chứng minh rằng: a) Tam giác ADE = Tam giác BCE; b) F là trung điểm của AC.)
a) Chứng minh Tam giác ADE = Tam giác BCE:
b) Chứng minh F là trung điểm của AC:
Khi giải bài tập về tứ giác, học sinh cần:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự trong sách bài tập Toán 8 Cánh Diều hoặc các nguồn tài liệu khác.
Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 26 trang 42 sách bài tập Toán 8 Cánh Diều. Chúc bạn học tập tốt và đạt kết quả cao!