Logo Header
  1. Môn Toán
  2. Giải bài 27 trang 62 sách bài tập toán 8 - Cánh diều

Giải bài 27 trang 62 sách bài tập toán 8 - Cánh diều

Giải bài 27 trang 62 Sách bài tập Toán 8 Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8. Bài viết này sẽ hướng dẫn bạn giải bài 27 trang 62 sách bài tập Toán 8 Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.

Cho đường thẳng \(d:y = \left( {m - 2} \right)x + 2\) với \(m \ne 2\).

Đề bài

Cho đường thẳng \(d:y = \left( {m - 2} \right)x + 2\) với \(m \ne 2\).

a) Tìm giá trị của \(m\) để đường thẳng \(d\) cùng với các trục \(Ox,Oy\) tạo thành tam giác có diện tích bằng 2.

b) Chứng tỏ rằng khi giá trị của \(m\) thay đổi thì tập hợp các đường thẳng \(d\) luôn đi qua một điểm cố định.

Phương pháp giải - Xem chi tiếtGiải bài 27 trang 62 sách bài tập toán 8 - Cánh diều 1

Đầu tiên tìm tọa độ giao điểm của đường thẳng \(d\) với trục \(Ox\) và \(Oy\) sau đó áp dụng công thức tính diện tích của tam giác để tìm giá trị của \(m\).

Lời giải chi tiết

a) Với \(y = 0\) thì \(x = \frac{{ - 2}}{{m - 2}}\), ta được điểm \(A\left( {\frac{{ - 2}}{{m - 2}};0} \right)\) là giao điểm của đường thẳng \(d\) với trục \(Ox\). Khi đó \(OA = \left| {\frac{{ - 2}}{{m - 2}}} \right|\).

Với \(x = 0\) thì \(y = 2\), ta được điểm \(B\left( {0;2} \right)\) là giao điểm của đường thẳng \(d\) với trục \(Oy\). Khi đó \(OB = 2\).

Ta có diện tích của tam giác \(OAB\) bằng 2 nên \(\frac{1}{2}.OA.OB = 2\) hay \(OA.OB = 4\).

Suy ra \(\left| {\frac{{ - 2}}{{m - 2}}} \right|.2 = 4\) hay \(\left| {\frac{{ - 2}}{{m - 2}}} \right| = 2\). Do đó \(\frac{{ - 2}}{{m - 2}} = 2\) hoặc \(\frac{{ - 2}}{{m - 2}} = - 2\).

Vậy \(m = 1\) hoặc \(m = 3\) (thỏa mãn) thì đường thẳng \(d\) cùng với các trục \(Ox,Oy\) tạo thành tam giác có diện tích bằng 2.

b) Từ câu a, ta có đường thẳng \(d\) luôn đi qua điểm \(B\left( {0;2} \right)\) với mọi giá trị của \(m\). Vậy khi giá trị của \(m\) thay đổi thì tập hợp các đường thẳng \(d\) luôn đi qua điểm \(B\left( {0;2} \right)\) cố định.

Vững vàng kiến thức, bứt phá điểm số Toán 8! Đừng bỏ lỡ Giải bài 27 trang 62 sách bài tập toán 8 - Cánh diều đặc sắc thuộc chuyên mục toán 8 trên toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát từng chi tiết chương trình sách giáo khoa, con bạn sẽ củng cố kiến thức nền tảng vững chắc và dễ dàng chinh phục các dạng bài khó. Phương pháp học trực quan, logic sẽ giúp các em tối ưu hóa quá trình ôn luyện và đạt hiệu quả học tập tối đa!

Giải bài 27 trang 62 Sách bài tập Toán 8 Cánh Diều: Tổng quan

Bài 27 trang 62 sách bài tập Toán 8 Cánh Diều thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình thang cân. Bài tập này yêu cầu học sinh phải hiểu rõ các định nghĩa, định lý liên quan đến hình thang cân để có thể giải quyết một cách chính xác.

Nội dung bài tập

Bài 27 trang 62 sách bài tập Toán 8 Cánh Diều thường bao gồm các dạng bài tập sau:

  • Chứng minh một hình là hình thang cân: Dựa vào các điều kiện như hai cạnh đáy song song và hai cạnh bên bằng nhau.
  • Tính độ dài các cạnh, đường cao của hình thang cân: Sử dụng các định lý về hình thang cân và các tam giác đồng dạng.
  • Tính diện tích hình thang cân: Áp dụng công thức tính diện tích hình thang: S = (a + b)h/2, trong đó a và b là độ dài hai đáy, h là đường cao.
  • Giải các bài toán thực tế liên quan đến hình thang cân: Ví dụ như tính chiều cao của một tòa nhà có mặt cắt ngang là hình thang cân.

Hướng dẫn giải chi tiết bài 27 trang 62

Để giải bài 27 trang 62 sách bài tập Toán 8 Cánh Diều một cách hiệu quả, bạn cần thực hiện theo các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho và những điều cần tìm.
  2. Vẽ hình: Vẽ hình minh họa bài toán, chú thích các điểm, đường thẳng và các yếu tố liên quan.
  3. Phân tích bài toán: Xác định các mối quan hệ giữa các yếu tố trong hình, các định lý, tính chất có thể áp dụng.
  4. Lập luận: Sử dụng các kiến thức đã học để lập luận, chứng minh hoặc tính toán.
  5. Kiểm tra lại kết quả: Đảm bảo rằng kết quả của bạn là hợp lý và phù hợp với điều kiện của bài toán.

Ví dụ minh họa

Bài toán: Cho hình thang cân ABCD (AB // CD), AB = 6cm, CD = 10cm, AD = BC = 5cm. Tính chiều cao của hình thang.

Giải:

Kẻ AH và BK vuông góc với CD (H, K thuộc CD). Ta có: DH = KC = (CD - AB)/2 = (10 - 6)/2 = 2cm.

Xét tam giác vuông ADH, ta có: AH2 = AD2 - DH2 = 52 - 22 = 21.

Vậy AH = √21 cm. Do đó, chiều cao của hình thang ABCD là √21 cm.

Mẹo giải nhanh

Để giải nhanh các bài tập về hình thang cân, bạn nên:

  • Nắm vững các định lý, tính chất của hình thang cân.
  • Sử dụng các tam giác đồng dạng để tìm các tỉ lệ cần thiết.
  • Vẽ thêm các đường phụ để tạo ra các tam giác vuông hoặc các hình quen thuộc.

Bài tập luyện tập

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về hình thang cân, bạn có thể tham khảo các bài tập sau:

  • Bài 28 trang 62 sách bài tập Toán 8 Cánh Diều
  • Bài 29 trang 62 sách bài tập Toán 8 Cánh Diều
  • Các bài tập tương tự trên các trang web học toán online.

Kết luận

Hy vọng rằng với hướng dẫn chi tiết này, bạn đã có thể giải bài 27 trang 62 sách bài tập Toán 8 Cánh Diều một cách dễ dàng và hiệu quả. Chúc bạn học tốt môn Toán!

Tài liệu, đề thi và đáp án Toán 8