Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8. Bài viết này sẽ hướng dẫn bạn giải bài 67 trang 85 sách bài tập Toán 8 Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.
Một chiếc kệ bày hoa quả có ba tầng được thiết kế như Hình 59. Tầng đáy có đường kính \(AB\) là 32 cm.
Đề bài
Một chiếc kệ bày hoa quả có ba tầng được thiết kế như Hình 59. Tầng đáy có đường kính \(AB\) là 32 cm. Tầng giữa có đường kính \(CD\) nhỏ hơn đường kính tầng đáy là 12 cm. Tính độ dài đường kính tầng trên cùng \(EF\), biết \(EF//AB\); \(D,C\) lần lượt là trung điểm của \(EA\) và \(FB\).
Phương pháp giải - Xem chi tiết
Tam giác \(A'B'C'\) gọi là đồng dạng với tam giác \(ABC\) nếu:
\(\widehat{A'}=\widehat{A},\widehat{B'}=\widehat{B},\widehat{C'}=\widehat{C}\) ; \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{A'C'}{AC}\).
Kí hiệu là \(\Delta A'B'C'\backsim \Delta ABC\).
Tỉ số các cạnh tương ứng \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}=k\) gọi là tỉ số đồng dạng.
Lời giải chi tiết
Tầng giữa có đường kính \(CD\) là: \(32-12=20\)cm.
Ta có: \(EF//AB;D,C\) lần lượt là trung điểm của \(EA\) và \(FB\)
\(=>DC//EF//AB\)
Xét hai tam giác \(EHD\) và \(EAB\) có \(DH//AB=>\Delta EHD\backsim \Delta EAB\)
$ =>\frac{DE}{AE}=\frac{DH}{AB}=\frac{1}{2} \\ =>DH=\frac{AB.DE}{AE}=\frac{32.1}{2}=16cm $
Độ dài \(HC=DC-DH=20-16=4\)cm.
Xét hai tam giác \(BHC\) và \(BEF\) có \(HC//EF=>\Delta BHC\backsim \Delta BEF\)
$ =>\frac{HC}{EF}=\frac{BC}{BF}=\frac{1}{2} \\=>EF=2.HC=2.4=8cm \\$
Vậy độ dài đường kính tầng trên cùng \(EF=8\)cm.
Bài 67 trang 85 sách bài tập Toán 8 Cánh Diều thuộc chương trình học Toán 8, tập trung vào việc ôn tập và củng cố kiến thức về các dạng bài tập liên quan đến hình học, cụ thể là các tính chất của hình thang cân. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.
Bài 67 thường bao gồm các dạng bài tập sau:
Để giải bài 67 trang 85 sách bài tập Toán 8 Cánh Diều một cách hiệu quả, bạn cần thực hiện theo các bước sau:
Bài toán: Cho hình thang cân ABCD (AB // CD), AB = 6cm, CD = 10cm, AD = BC = 5cm. Tính chiều cao của hình thang.
Lời giải:
Kẻ AH và BK vuông góc với CD (H, K thuộc CD). Khi đó, AH = BK là chiều cao của hình thang.
Vì ABCD là hình thang cân nên DH = KC = (CD - AB) / 2 = (10 - 6) / 2 = 2cm.
Xét tam giác vuông ADH, ta có: AH2 = AD2 - DH2 = 52 - 22 = 21.
Vậy, AH = √21 cm. Do đó, chiều cao của hình thang ABCD là √21 cm.
Để học tốt môn Toán 8 và giải bài tập hình thang cân một cách hiệu quả, bạn có thể tham khảo các tài liệu sau:
Bài 67 trang 85 sách bài tập Toán 8 Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về hình thang cân. Hy vọng với hướng dẫn chi tiết và các mẹo giải bài tập trên, bạn sẽ giải quyết bài toán này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!