Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 8 sách Cánh Diều. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 56 trang 83, giúp bạn nắm vững kiến thức và tự tin hơn trong học tập.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.
Cho tam giác \(ABC\). Các điểm \(M,N\) lần lượt thuộc các cạnh \(AB\) và \(AC\) thỏa mãn \(MN//BC\) và \(\frac{AM}{MB}=\frac{2}{3}\). Tỉ số \(\frac{NC}{AN}\) bằng
Đề bài
Cho tam giác \(ABC\). Các điểm \(M,N\) lần lượt thuộc các cạnh \(AB\) và \(AC\) thỏa mãn \(MN//BC\) và \(\frac{AM}{MB}=\frac{2}{3}\). Tỉ số \(\frac{NC}{AN}\) bằng
A. \(\frac{2}{3}\)
B. \(\frac{2}{5}\)
C. \(\frac{3}{2}\)
D.\(\frac{3}{5}\)
Phương pháp giải - Xem chi tiết
Đoạn thẳng tỉ lệ: Hai đoạn thẳng \(AB\) và \(CD\) tỉ lệ với hai đoạn thẳng \(MN\) và \(PQ\) nếu có tỉ lệ thức \(\frac{AB}{CD}=\frac{MN}{PQ}\)
Dựa vào định lí Thales: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.
Lời giải chi tiết
Do \(MN//BC\) nên theo định lí Thales:
$ \frac{AM}{MB}=\frac{AN}{NC}=\frac{2}{3} \\=>\frac{NC}{AN}=\frac{3}{2} \\$
Bài 56 trang 83 sách bài tập Toán 8 Cánh Diều thuộc chương trình học về hình học, cụ thể là phần kiến thức liên quan đến tứ giác. Bài tập này thường yêu cầu học sinh vận dụng các định lý, tính chất đã học để chứng minh một tứ giác là hình gì (hình bình hành, hình chữ nhật, hình thoi, hình vuông) hoặc tính toán các yếu tố liên quan đến tứ giác đó (góc, cạnh, đường chéo).
Bài 56 thường bao gồm một hoặc nhiều câu hỏi nhỏ, mỗi câu hỏi yêu cầu học sinh giải quyết một vấn đề cụ thể liên quan đến tứ giác. Các dạng bài tập thường gặp bao gồm:
Để giải bài 56 trang 83 sách bài tập Toán 8 Cánh Diều một cách hiệu quả, bạn cần:
Bài tập: Cho tứ giác ABCD có AB = CD, AD = BC. Chứng minh tứ giác ABCD là hình bình hành.
Lời giải:
Xét hai tam giác ABD và CDB, ta có:
Do đó, tam giác ABD = tam giác CDB (c-c-c). Suy ra ∠ABD = ∠CDB và ∠ADB = ∠CBD.
Vì ∠ABD = ∠CDB (cmt) nên AB // CD (hai góc so le trong bằng nhau).
Vì ∠ADB = ∠CBD (cmt) nên AD // BC (hai góc so le trong bằng nhau).
Vậy, tứ giác ABCD là hình bình hành (dấu hiệu nhận biết hình bình hành).
Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 8:
Hy vọng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 56 trang 83 sách bài tập Toán 8 Cánh Diều một cách hiệu quả. Chúc bạn học tập tốt!