Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8. Bài viết này sẽ hướng dẫn bạn giải bài 31 trang 63 Sách bài tập Toán 8 Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.
Trong mặt phẳng tọa độ \(Oxy\), cho các điểm \(A\left( {2;3} \right),B\left( {2; - 4} \right)\).
Đề bài
Trong mặt phẳng tọa độ \(Oxy\), cho các điểm \(A\left( {2;3} \right),B\left( {2; - 4} \right)\). Tìm tọa độ điểm \(C\) sao cho \(C\) nằm trên trục \(Ox\) và \(CA + CB\) đạt giá trị nhỏ nhất.
Phương pháp giải - Xem chi tiết
Xác định điểm \(A,B\) trên mặt phẳng tọa độ \(Oxy\), sau đó xác định điểm \(C\) là giao điểm của \(AB\) và trục \(Ox\).
Lời giải chi tiết
Ta có: \(CA + CB \ge AB\) nên \(CA + CB\) đạt giá trị nhỏ nhất bằng \(AB = 7\). Khi đó, \(C\) là giao điểm của \(AB\) và trục \(Ox\). Vậy \(C\left( {2;0} \right)\).
Bài 31 trang 63 Sách bài tập Toán 8 Cánh Diều thuộc chương trình học Toán 8, tập trung vào việc ôn tập và củng cố kiến thức về các dạng bài tập liên quan đến hình học, cụ thể là các tính chất của hình thang cân. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các vấn đề thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.
Bài 31 trang 63 Sách bài tập Toán 8 Cánh Diều thường bao gồm các dạng bài tập sau:
Để giúp bạn giải bài 31 trang 63 Sách bài tập Toán 8 Cánh Diều một cách dễ dàng, chúng tôi sẽ cung cấp lời giải chi tiết cho từng bài tập:
Đề bài: Cho hình thang cân ABCD (AB // CD). Gọi E là giao điểm của AD và BC. Chứng minh rằng EA = EB.
Lời giải:
Đề bài: Cho hình thang cân ABCD (AB // CD), AB = 20cm, CD = 10cm, AD = BC = 13cm. Tính chiều cao của hình thang.
Lời giải:
Kẻ AH ⊥ CD (H ∈ CD). Khi đó, DH = (CD - AB) / 2 = (10 - 20) / 2 = -5 (vô lý). Do đó, ta cần kẻ AH ⊥ CD sao cho H nằm ngoài đoạn CD.
Khi đó, DH = (AB - CD) / 2 = (20 - 10) / 2 = 5cm.
Áp dụng định lý Pitago vào tam giác vuông ADH, ta có:
AH2 = AD2 - DH2 = 132 - 52 = 169 - 25 = 144
Suy ra, AH = √144 = 12cm.
Vậy, chiều cao của hình thang là 12cm.
Đề bài: (Bài toán thực tế - ví dụ về việc tính chiều cao của một tòa nhà dựa trên hình thang cân)
Lời giải: (Giải thích chi tiết dựa trên dữ kiện bài toán)
Khi giải các bài tập về hình thang cân, bạn cần lưu ý những điều sau:
Hy vọng rằng với lời giải chi tiết và những lưu ý trên, bạn đã có thể giải bài 31 trang 63 Sách bài tập Toán 8 Cánh Diều một cách dễ dàng và hiệu quả. Hãy luyện tập thường xuyên để củng cố kiến thức và nâng cao kỹ năng giải toán của mình. Chúc bạn học tốt!