Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8. Bài viết này sẽ hướng dẫn bạn giải bài 17 trang 40 trong sách bài tập Toán 8 Cánh Diều, giúp bạn nắm vững kiến thức và tự tin hơn trong học tập.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác và đầy đủ nhất, đồng thời trình bày một cách rõ ràng, logic để bạn có thể dễ dàng theo dõi và áp dụng vào các bài tập tương tự.
Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến:
Đề bài
Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến:
a) \(M = \frac{{x - 2y}}{{3x + 6y}}:\frac{{{x^2} - 4{y^2}}}{{{x^2} + 4xy + 4{y^2}}}\)
b) \(N = \left( {x - \frac{{{x^2} + {y^2}}}{{x + y}}} \right)\left( {\frac{1}{y} + \frac{2}{{x - y}}} \right)\)
c) \(P = \left( {\frac{{{x^3} + {y^3}}}{{x + y}} - xy} \right):\left( {{x^2} - {y^2}} \right) + \frac{{2y}}{{x + y}}\)
Phương pháp giải - Xem chi tiết
Rút gọn các biểu thức để cho giá trị của biểu thức là một hằng số thì giá trị của biểu thức sẽ không phụ thuộc vào giá trị của biến.
Lời giải chi tiết
a) Rút gọn biểu thức \(M\) ta có:
\(\begin{array}{l}M = \frac{{x - 2y}}{{3x + 6y}}:\frac{{{x^2} - 4{y^2}}}{{{x^2} + 4xy + 4{y^2}}}\\ = \frac{{x - 2y}}{{3x + 6y}}.\frac{{{x^2} + 4xy + 4{y^2}}}{{{x^2} - 4{y^2}}}\\ = \frac{{\left( {x - 2y} \right).{{\left( {x + 2y} \right)}^2}}}{{3\left( {x + 2y} \right).\left( {x - 2y} \right)\left( {x + 2y} \right)}}\\ = \frac{1}{3}\end{array}\)
Ta thấy \(M = \frac{1}{3}\) vậy giá trị của biểu thức \(M\) không phụ thuộc vào giá trị của biến.
b) Rút gọn biểu thức \(N\) ta có:
\(\begin{array}{l}N = \left( {x - \frac{{{x^2} + {y^2}}}{{x + y}}} \right)\left( {\frac{1}{y} + \frac{2}{{x - y}}} \right)\\ = \left( {\frac{{x\left( {x + y} \right)}}{{x + y}} - \frac{{{x^2} + {y^2}}}{{x + y}}} \right)\left( {\frac{{x - y}}{{y\left( {x - y} \right)}} + \frac{{2y}}{{y\left( {x - y} \right)}}} \right)\\ = \left( {\frac{{{x^2} + xy - {x^2} - {y^2}}}{{x + y}}} \right)\left( {\frac{{x - y + 2y}}{{y\left( {x - y} \right)}}} \right)\\ = \left( {\frac{{xy - {y^2}}}{{x + y}}} \right)\left( {\frac{{x + y}}{{y\left( {x - y} \right)}}} \right)\\ = \left( {\frac{{y\left( {x - y} \right)}}{{x + y}}} \right)\left( {\frac{{x + y}}{{y\left( {x - y} \right)}}} \right)\\ = 1\end{array}\)
Ta thấy \(N = 1\) vậy giá trị của biểu thức \(N\) không phụ thuộc vào giá trị của biến.
c) Rút gọn biểu thức \(P\) ta có:
\(\begin{array}{l}P = \left( {\frac{{{x^3} + {y^3}}}{{x + y}} - xy} \right):\left( {{x^2} - {y^2}} \right) + \frac{{2y}}{{x + y}}\\ = \left( {\frac{{\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)}}{{x + y}} - xy} \right):\left( {x - y} \right)\left( {x + y} \right) + \frac{{2y}}{{x + y}}\\ = \left( {{x^2} - xy + {y^2} - xy} \right):\left( {x - y} \right)\left( {x + y} \right) + \frac{{2y}}{{x + y}}\\ = \frac{{{x^2} + {y^2} - 2xy}}{{\left( {x - y} \right)\left( {x + y} \right)}} + \frac{{2y}}{{x + y}}\\ = \frac{{{{\left( {x - y} \right)}^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} + \frac{{2y}}{{x + y}}\\ = \frac{{x - y}}{{x + y}} + \frac{{2y}}{{x + y}}\\ = \frac{{x + y}}{{x + y}} = 1\end{array}\)
Ta thấy \(P = 1\) vậy giá trị của biểu thức \(P\) không phụ thuộc vào giá trị của biến.
Bài 17 trang 40 Sách bài tập Toán 8 Cánh Diều thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình bình hành, hình chữ nhật, hình thoi và hình vuông để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải hiểu rõ các định nghĩa, định lý và tính chất của các hình đặc biệt này, cũng như khả năng áp dụng chúng vào việc chứng minh các mối quan hệ giữa các yếu tố của hình.
Bài 17 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh thực hiện các thao tác như:
Bài tập 17.1 yêu cầu học sinh chứng minh một tứ giác là hình bình hành. Để làm được điều này, bạn cần vận dụng một trong các dấu hiệu nhận biết hình bình hành:
Hãy phân tích kỹ đề bài, xác định các yếu tố đã cho và lựa chọn dấu hiệu phù hợp để chứng minh tứ giác đó là hình bình hành.
Bài tập 17.2 thường liên quan đến việc tính toán các yếu tố của hình chữ nhật. Hãy nhớ rằng hình chữ nhật là một hình bình hành đặc biệt có bốn góc vuông. Do đó, bạn có thể sử dụng các tính chất của hình bình hành và thêm các tính chất đặc biệt của hình chữ nhật để giải quyết bài toán.
Bài tập 17.3 có thể yêu cầu học sinh chứng minh một tứ giác là hình thoi hoặc hình vuông. Để làm được điều này, bạn cần vận dụng các dấu hiệu nhận biết hình thoi và hình vuông:
Để giải bài 17 trang 40 SBT Toán 8 Cánh Diều một cách hiệu quả, bạn cần:
Kiến thức về các hình bình hành, hình chữ nhật, hình thoi và hình vuông có ứng dụng rất lớn trong thực tế, ví dụ như:
Bài 17 trang 40 Sách bài tập Toán 8 Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về các hình bình hành, hình chữ nhật, hình thoi và hình vuông. Hy vọng rằng với hướng dẫn chi tiết này, bạn sẽ giải quyết bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!