Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 24 trang 97 sách bài tập Toán 8 Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 24 trang 97 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Cho tam giác \(ABC\) cân tại \(A\) có các đường trung tuyến \(BM,CN\) cắt nhau tại \(G\)
Đề bài
Cho tam giác \(ABC\) cân tại \(A\) có các đường trung tuyến \(BM,CN\) cắt nhau tại \(G\). Trên tia đối của tia \(GB,GC\) lần lượt lấy các điểm \(D,E\) sao cho \(GD = GB,GE = GC\). Tứ giác \(BEDC\) là hình gì? Vì sao?
Phương pháp giải - Xem chi tiết
Dựa vào tính chất và dấu hiệu nhận biết của hình bình hành và hình chữ nhật để xác định tứ giác \(BEDC\) .
Lời giải chi tiết
Tứ giác \(BEDC\) có hai đường chéo \(BD\) và \(CE\) cắt nhau tại trung điểm \(G\) của mỗi đường nên \(BEDC\) là hình bình hành.
Ta có: \(AB = AC,AM = CM,AN = BN\) nên \(BN = CM\).
\(\Delta BCM = \Delta CBN\) (c.g.c). Suy ra \(BM = CN\).
Do \(G\) là trọng tâm của tam giác \(ABC\) nên
\(BG = \frac{2}{3}BM\) và \(CG = \frac{2}{3}CN\)
Do đó \(BG = CG\). Mà \(G\) là trung điểm của \(BD\) và \(CE\), suy ra \(BD = CE\)
Hình bình hành \(BEDC\) có \(BD = CE\) nên \(BEDC\) là hình chữ nhật.
Bài 24 trang 97 sách bài tập Toán 8 Cánh Diều thuộc chương trình học Toán 8, tập trung vào việc ôn tập và củng cố kiến thức về các dạng bài tập liên quan đến hình học, cụ thể là các bài toán về tứ giác. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học về tính chất của các loại tứ giác (hình bình hành, hình chữ nhật, hình thoi, hình vuông) để giải quyết các bài toán thực tế.
Bài 24 trang 97 sách bài tập Toán 8 Cánh Diều thường bao gồm các dạng bài tập sau:
Để giải bài 24 trang 97 sách bài tập Toán 8 Cánh Diều một cách hiệu quả, bạn cần:
Bài tập: Cho tứ giác ABCD có AB = CD, AD = BC. Chứng minh tứ giác ABCD là hình bình hành.
Lời giải:
Xét hai tam giác ABD và CDB, ta có:
Do đó, tam giác ABD = tam giác CDB (c-c-c). Suy ra ∠ABD = ∠CDB và ∠ADB = ∠CBD.
Vì ∠ABD = ∠CDB (cmt) nên AB // CD (hai góc so le trong bằng nhau).
Vì ∠ADB = ∠CBD (cmt) nên AD // BC (hai góc so le trong bằng nhau).
Vậy, tứ giác ABCD là hình bình hành (dấu hiệu nhận biết hình bình hành).
Khi giải bài tập về tứ giác, bạn cần lưu ý:
Giaitoan.edu.vn là địa chỉ tin cậy cho học sinh và phụ huynh trong việc học Toán 8. Chúng tôi cung cấp:
Hãy truy cập giaitoan.edu.vn ngay hôm nay để khám phá những lợi ích tuyệt vời mà chúng tôi mang lại!