Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 23 trang 17 sách bài tập Toán 8 Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 23 trang 17 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Phân tích mỗi đa thức sau thành nhân tử:
Đề bài
Phân tích mỗi đa thức sau thành nhân tử:
a) \({x^3}\left( {13xy - 5} \right) - {y^3}\left( {5 - 13xy} \right)\)
b) \(8{x^3}yz + 12{x^2}yz + 6xyz + yz\)
Phương pháp giải - Xem chi tiết
Ta có thể phân tích đa thức thành nhân tử bằng cách vận dụng trực tiếp hằng đẳng thức hoặc bằng cách vận dụng hằng đẳng thức thông qua nhóm số hạng và đặt nhân tử chung.
Lời giải chi tiết
a) Ta có:
\(\begin{array}{l}{x^3}\left( {13xy - 5} \right) - {y^3}\left( {5 - 13xy} \right) \\= {x^3}\left( {13xy - 5} \right) + {y^3}\left( {13xy - 5} \right)\\ = \left( {{x^3} + {y^3}} \right)\left( {13xy - 5} \right) \\= \left( {13xy - 5} \right)\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)\end{array}\)
b) Ta có:
\(\begin{array}{l}8{x^3}yz + 12{x^2}yz + 6xyz + yz\\ = yz\left( {8{x^3} + 12{x^2} + 6x + 1} \right)\\ = yz\left( {{{\left( {2x} \right)}^3} + 3.{{\left( {2x} \right)}^2}.1 + 3.2x{{.1}^2} + {1^3}} \right)\\ = yz{\left( {2x + 1} \right)^3}\end{array}\)
Bài 23 trang 17 sách bài tập Toán 8 Cánh Diều thuộc chương trình học về các tứ giác đặc biệt, cụ thể là hình thang cân. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản sau:
Bài 23 trang 17 thường yêu cầu học sinh chứng minh một tứ giác là hình thang cân, tính độ dài các cạnh hoặc góc, hoặc tìm mối liên hệ giữa các yếu tố của hình thang cân. Để giải bài toán này, bạn cần:
(Ở đây sẽ là lời giải chi tiết cho từng câu hỏi của bài 23, bao gồm các bước giải, giải thích và kết luận. Ví dụ:)
Câu a: Cho hình thang ABCD có AB // CD, AD = BC. Chứng minh ABCD là hình thang cân.
Giải:
Vì ABCD là hình thang có AB // CD và AD = BC nên ABCD là hình thang cân (dấu hiệu nhận biết hình thang cân).
Ngoài bài 23, còn rất nhiều bài tập tương tự về hình thang cân. Dưới đây là một số dạng bài tập thường gặp và phương pháp giải:
Để củng cố kiến thức và kỹ năng giải toán, bạn có thể tự giải các bài tập sau:
Bài 23 trang 17 sách bài tập Toán 8 Cánh Diều là một bài toán quan trọng giúp học sinh hiểu rõ hơn về hình thang cân và các tính chất của nó. Hy vọng rằng với lời giải chi tiết và hướng dẫn giải bài tập trong bài viết này, bạn sẽ tự tin hơn trong việc giải toán và đạt kết quả tốt trong các bài kiểm tra.
Giaitoan.edu.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán. Chúc bạn học tập tốt!