Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 8 Cánh Diều. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 10 trang 36, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi hiểu rằng việc giải bài tập Toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Rút gọn rồi tính giá trị biểu thức:
Đề bài
Rút gọn rồi tính giá trị biểu thức:
a) \(A = x + 1 - \frac{{{x^2} - 4}}{{x - 1}}\) tại \(x = - 4\)
b) \(B = \frac{1}{{5 - x}} - \frac{{{x^2} + 5x}}{{{x^2} - 25}}\) tại \(x = 99\)
c) \(C = \frac{1}{{x - 1}} - \frac{{2x}}{{{x^3} - {x^2} + x - 1}}\) tại \(x = 0,7\)
d) \(D = \frac{1}{{x\left( {x + 1} \right)}} + \frac{1}{{\left( {x + 1} \right)\left( {x + 2} \right)}} + \frac{1}{{x + 2}}\) tại \(\frac{1}{{23}}\)
Phương pháp giải - Xem chi tiết
Muốn rút gọn hai phân thức, ta có thể làm như sau:
Bước 1: phân tích tử và mẫu thành nhân tử (nếu cần)
Bước 2: tìm nhân tử chung của 2 phân thức rồi quy đồng.
Bước 3: thực hiện rút gọn sau đó tính giá trị của phân thức đã rút gọn
Lời giải chi tiết
a) Điều kiện xác định của biểu thức \(A\) là \(x \ne 1\).
Ta có:
\(\begin{array}{l}A = x + 1 - \frac{{{x^2} - 4}}{{x - 1}} = \frac{{\left( {x + 1} \right)\left( {x - 1} \right)}}{{x - 1}} - \frac{{{x^2} - 4}}{{x - 1}} \\= \frac{{{x^2} - 1 - \left( {{x^2} - 4} \right)}}{{x - 1}}= \frac{{{x^2} - 1 - {x^2} + 4}}{{x - 1}} = \frac{3}{{x - 1}}\end{array}\)
Vậy giá trị của biểu thức \(A\) tại \(x = - 4\) là: \(\frac{3}{{ - 4 - 1}} = \frac{{ - 3}}{5}\)
b) Điều kiện xác định của biểu thức \(B\) là \(x \ne \pm 5\)
Ta có:
\(\begin{array}{l}B = \frac{1}{{5 - x}} - \frac{{{x^2} + 5x}}{{{x^2} - 25}} = \frac{{ -1}}{{x - 5}} - \frac{x(x +5)}{{\left( {x + 5} \right)\left( {x - 5} \right)}}\\ = \frac{{ -1}}{{x - 5}} - \frac{x}{x - 5}\\ = \frac{{ - 1 - x}}{{x - 5}}\end{array}\)
Vậy giá trị của biểu thức \(B\) tại \(x = 99\) là: \(\frac{{ - 1 - 99}}{{99 - 5}} = \frac{{ - 50}}{{47}}\)
c) Ta có:
\({x^3} - {x^2} + x - 1 = \left( {{x^3} - {x^2}} \right) + \left( {x - 1} \right) \\= {x^2}\left( {x - 1} \right) + \left( {x - 1} \right) = \left( {x - 1} \right)\left( {{x^2} + 1} \right)\)
Điều kiện xác định của biểu thức \(C\) là: \(x \ne 1\)
Suy ra
\(\begin{array}{l}C = \frac{1}{{x - 1}} - \frac{{2x}}{{{x^3} - {x^2} + x - 1}} = \frac{1}{{x - 1}} - \frac{{2x}}{{\left( {x - 1} \right)\left( {{x^2} + 1} \right)}}\\ = \frac{{{x^2} + 1}}{{\left( {x - 1} \right)\left( {{x^2} + 1} \right)}} - \frac{{2x}}{{\left( {x - 1} \right)\left( {{x^2} + 1} \right)}}\\ = \frac{{{x^2} + 1 - 2x}}{{\left( {x - 1} \right)\left( {{x^2} + 1} \right)}} = \frac{{{{\left( {x - 1} \right)}^2}}}{{\left( {x - 1} \right)\left( {{x^2} + 1} \right)}}\\ = \frac{{x - 1}}{{{x^2} + 1}}\end{array}\)
Vậy giá trị của biểu thức \(C\) tại \(x = 0,7\) là:
\(\frac{{0,7 - 1}}{{0,{7^2} + 1}} = \frac{{ - 30}}{{149}}\)
d) Ta sử dụng:
\(\frac{1}{a(a + 1)} = \frac{(a + 1) - a}{a(a + 1)} = \frac{a + 1}{a(a + 1)} - \frac{a}{a(a + 1)} = \frac{1}{a} - \frac{1}{a + 1}\)
Điều kiện xác định của biểu thức \(D\) là: \(x \ne 0;x \ne - 1;x \ne - 2\)
Ta có:
\(\begin{array}{l}D = \frac{1}{{x\left( {x + 1} \right)}} + \frac{1}{{\left( {x + 1} \right)\left( {x + 2} \right)}} + \frac{1}{{x + 2}}\\ = \left( {\frac{1}{x} - \frac{1}{{x + 1}}} \right) + \left( {\frac{1}{{x + 1}} - \frac{1}{{x + 2}}} \right) + \frac{1}{{x + 2}} \\ = {\frac{1}{x} - \frac{1}{{x + 1}}} + {\frac{1}{{x + 1}} - \frac{1}{{x + 2}}} + \frac{1}{{x + 2}} = \frac{1}{x}\end{array}\)
Vậy giá trị của biểu thức \(D\) tại \(x = \frac{1}{{23}}\) là: \(\frac{1}{{\frac{1}{{23}}}} = 23\)
Bài 10 trang 36 sách bài tập Toán 8 Cánh Diều thuộc chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về hình học, cụ thể là các tính chất của hình thang cân. Bài tập yêu cầu học sinh chứng minh các tính chất, tính toán độ dài đoạn thẳng và góc, và giải quyết các bài toán thực tế liên quan đến hình thang cân.
Bài 10 bao gồm một số câu hỏi nhỏ, mỗi câu hỏi tập trung vào một khía cạnh khác nhau của hình thang cân. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
Để chứng minh câu a, ta cần sử dụng kiến thức về tính chất của hình thang cân. Cụ thể, ta sẽ chứng minh rằng hai góc kề một đáy bằng nhau. Ta có thể sử dụng các tam giác đồng dạng hoặc các định lý về góc để chứng minh điều này.
(Giải thích chi tiết các bước chứng minh, kèm theo hình vẽ minh họa nếu cần thiết)
Để tính độ dài đoạn thẳng trong câu b, ta cần sử dụng các công thức tính toán liên quan đến hình thang cân. Ví dụ, ta có thể sử dụng định lý Pitago hoặc các công thức tính diện tích để tìm ra độ dài cần tìm.
(Giải thích chi tiết các bước tính toán, kèm theo hình vẽ minh họa nếu cần thiết)
Để tìm số đo góc trong câu c, ta cần sử dụng kiến thức về tính chất của góc trong hình thang cân. Ví dụ, ta có thể sử dụng tính chất tổng các góc trong một tam giác hoặc tính chất hai góc kề một cạnh bên bằng 180 độ.
(Giải thích chi tiết các bước tìm số đo góc, kèm theo hình vẽ minh họa nếu cần thiết)
Sau khi giải xong bài 10 trang 36, bạn có thể tự luyện tập thêm với các bài tập tương tự để củng cố kiến thức. Bạn có thể tìm thấy các bài tập này trong sách bài tập Toán 8 Cánh Diều hoặc trên các trang web học toán online.
Bài 10 trang 36 sách bài tập Toán 8 Cánh Diều là một bài tập quan trọng giúp học sinh hiểu sâu hơn về hình thang cân. Hy vọng với hướng dẫn chi tiết này, bạn đã có thể giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!