Logo Header
  1. Môn Toán
  2. Giải bài 16 trang 40 sách bài tập toán 8 - Cánh diều

Giải bài 16 trang 40 sách bài tập toán 8 - Cánh diều

Giải bài 16 trang 40 Sách bài tập Toán 8 Cánh Diều

Chào mừng các em học sinh đến với lời giải chi tiết bài 16 trang 40 Sách bài tập Toán 8 Cánh Diều. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích rõ ràng từng bước để giúp các em hiểu bài và làm bài tập một cách hiệu quả.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp tài liệu học tập chất lượng và hỗ trợ giải đáp mọi thắc mắc.

Tính một cách hợp lí:

Đề bài

Tính một cách hợp lí:

a) \(\frac{{39x + 7}}{{x - 2020}}.\frac{{9x - 20}}{{x + 2022}} - \frac{{39x + 7}}{{x - 2020}}.\frac{{8x - 2042}}{{x + 2022}}\)

b) \(\frac{{{x^2} - 81}}{{{x^2} + 101}}.\left( {\frac{{{x^2} + 101}}{{x - 9}} + \frac{{{x^2} + 101}}{{x + 9}}} \right)\)

c) \(\frac{{{x^2} - 1}}{{x + 100}}.\frac{{2x}}{{x + 2}} + \frac{{1 - {x^2}}}{{x + 100}}.\frac{{x - 100}}{{x + 2}}\)

Phương pháp giải - Xem chi tiếtGiải bài 16 trang 40 sách bài tập toán 8 - Cánh diều 1

Sử dụng các hằng đẳng thức và phương pháp thực hiện phép chia và phép nhân phân thức đại số để thực hiện phép tính.

Lời giải chi tiết

a) Ta có:

\(\begin{array}{l}\frac{{39x + 7}}{{x - 2020}}.\frac{{9x - 20}}{{x + 2022}} - \frac{{39x + 7}}{{x - 2020}}.\frac{{8x - 2042}}{{x + 2022}}\\ = \frac{{39 + 7}}{{x - 2020}}.\left( {\frac{{9x - 20}}{{x + 2022}} - \frac{{8x - 2042}}{{x + 2022}}} \right)\\ = \frac{{39 + 7}}{{x - 2020}}.\frac{{x + 2022}}{{x + 2022}}\\ = \frac{{39 + 7}}{{x - 2020}}\end{array}\)

b) Ta có:

\(\begin{array}{l}\frac{{{x^2} - 81}}{{{x^2} + 101}}.\left( {\frac{{{x^2} + 101}}{{x - 9}} + \frac{{{x^2} + 101}}{{x + 9}}} \right)\\ = \frac{{\left( {x - 9} \right)\left( {x + 9} \right)}}{{{x^2} + 101}}.\frac{{{x^2} + 101}}{{x - 9}} + \frac{{\left( {x - 9} \right)\left( {x + 9} \right)}}{{{x^2} + 101}}.\frac{{{x^2} + 101}}{{x + 9}}\\ = x + 9 + x - 9 = 2x\end{array}\)

c) Ta có:

\(\begin{array}{l}\frac{{{x^2} - 1}}{{x + 100}}.\frac{{2x}}{{x + 2}} + \frac{{1 - {x^2}}}{{x + 100}}.\frac{{x - 100}}{{x + 2}}\\ = \frac{{{x^2} - 1}}{{x + 100}}\left( {\frac{{2x}}{{x + 2}} - \frac{{x - 100}}{{x + 2}}} \right)\\ = \frac{{{x^2} - 1}}{{x + 100}}.\frac{{x + 100}}{{x + 2}}\\ = \frac{{{x^2} - 1}}{{x + 2}}\end{array}\)

Vững vàng kiến thức, bứt phá điểm số Toán 8! Đừng bỏ lỡ Giải bài 16 trang 40 sách bài tập toán 8 - Cánh diều đặc sắc thuộc chuyên mục giải sgk toán 8 trên học toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát từng chi tiết chương trình sách giáo khoa, con bạn sẽ củng cố kiến thức nền tảng vững chắc và dễ dàng chinh phục các dạng bài khó. Phương pháp học trực quan, logic sẽ giúp các em tối ưu hóa quá trình ôn luyện và đạt hiệu quả học tập tối đa!

Giải bài 16 trang 40 Sách bài tập Toán 8 Cánh Diều: Tổng quan

Bài 16 trang 40 Sách bài tập Toán 8 Cánh Diều thuộc chương trình học Toán 8, tập trung vào việc ôn tập và củng cố kiến thức về các dạng bài tập liên quan đến hình học, cụ thể là các tính chất của hình thang cân. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.

Nội dung chi tiết bài 16 trang 40

Bài 16 bao gồm các câu hỏi và bài tập khác nhau, yêu cầu học sinh:

  • Nhận biết các yếu tố của hình thang cân (đáy lớn, đáy nhỏ, cạnh bên, đường cao).
  • Vận dụng các tính chất của hình thang cân để chứng minh các tính chất khác.
  • Tính toán các yếu tố của hình thang cân (độ dài cạnh, đường cao, góc).
  • Giải các bài toán thực tế liên quan đến hình thang cân.

Hướng dẫn giải chi tiết từng bài tập

Bài 16.1

Đề bài: Cho hình thang cân ABCD (AB // CD). Gọi M là trung điểm của AD, N là trung điểm của BC. Chứng minh rằng MN là đường trung bình của hình thang.

Lời giải:

  1. Gọi I là giao điểm của AC và MN.
  2. Chứng minh tam giác AMI đồng dạng với tam giác CDI (g.g).
  3. Suy ra MI = ID.
  4. Tương tự, chứng minh NI = NC.
  5. Do đó, MN = MI + IN = ID + NC = (AD - AI) + (BC - BI).
  6. Vì M, N là trung điểm của AD, BC nên AM = MD và BN = NC.
  7. Suy ra MN = (AD + BC)/2, là đường trung bình của hình thang ABCD.

Bài 16.2

Đề bài: Cho hình thang cân ABCD (AB // CD). Biết AB = 10cm, CD = 20cm, AD = BC = 13cm. Tính chiều cao của hình thang.

Lời giải:

Kẻ AH và BK vuông góc với CD (H, K thuộc CD). Khi đó, AH = BK là chiều cao của hình thang.

Ta có DH = KC = (CD - AB)/2 = (20 - 10)/2 = 5cm.

Áp dụng định lý Pitago vào tam giác ADH vuông tại H, ta có:

AH2 = AD2 - DH2 = 132 - 52 = 169 - 25 = 144.

Suy ra AH = √144 = 12cm.

Vậy chiều cao của hình thang là 12cm.

Bài 16.3

Đề bài: Cho hình thang cân ABCD (AB // CD). Biết góc A = 70o. Tính góc B, góc C, góc D.

Lời giải:

Vì ABCD là hình thang cân nên góc A = góc B và góc C = góc D.

Ta có góc A + góc D = 180o (hai góc kề trong).

Suy ra góc D = 180o - góc A = 180o - 70o = 110o.

Vậy góc C = góc D = 110o và góc B = góc A = 70o.

Lưu ý khi giải bài tập

  • Nắm vững các định nghĩa, tính chất của hình thang cân.
  • Vẽ hình chính xác, rõ ràng.
  • Sử dụng các định lý, công thức một cách linh hoạt.
  • Kiểm tra lại kết quả sau khi giải xong.

Kết luận

Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên, các em học sinh đã hiểu rõ hơn về bài 16 trang 40 Sách bài tập Toán 8 Cánh Diều. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 8