Logo Header
  1. Môn Toán
  2. Giải bài 69 trang 85 sách bài tập toán 8 – Cánh diều

Giải bài 69 trang 85 sách bài tập toán 8 – Cánh diều

Giải bài 69 trang 85 Sách bài tập Toán 8 Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8. Bài viết này sẽ hướng dẫn bạn giải bài 69 trang 85 sách bài tập Toán 8 Cánh Diều một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.

Cho tam giác \(ABC\) cân tại \(A,AB=10\)cm, \(BC=12\)cm. Gọi \(I\) là giao điểm của các đường phân giác của tam giác \(ABC\). Tính độ dài \(AI\).

Đề bài

Cho tam giác \(ABC\) cân tại \(A,AB=10\)cm, \(BC=12\)cm. Gọi \(I\) là giao điểm của các đường phân giác của tam giác \(ABC\). Tính độ dài \(AI\).

Phương pháp giải - Xem chi tiếtGiải bài 69 trang 85 sách bài tập toán 8 – Cánh diều 1

Tam giác \(A'B'C'\) gọi là đồng dạng với tam giác \(ABC\) nếu:

\(\widehat{A'}=\widehat{A},\widehat{B'}=\widehat{B},\widehat{C'}=\widehat{C}\) ; \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{A'C'}{AC}\).

Kí hiệu là \(\Delta A'B'C'\backsim \Delta ABC\).

Tỉ số các cạnh tương ứng \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}=k\) gọi là tỉ số đồng dạng.

Lời giải chi tiết

Giải bài 69 trang 85 sách bài tập toán 8 – Cánh diều 2

Gọi \(H\) là giao điểm của hai đường thẳng \(AI\) và \(BC\). Do tam giác \(ABC\) cân tại \(A\) nên đường phân giác \(AI\) cũng là đường cao, đường trung tuyến. Do đó \(BH=\frac{BC}{2}=6\)cm. Tam giác \(AHB\) vuông tại \(H\) nên \(A{{H}^{2}}=A{{B}^{2}}-B{{H}^{2}}={{10}^{2}}-{{6}^{2}}=64\), suy ra \(AH=8\)cm. Ta có \(\frac{AI}{IH}=\frac{AB}{BH}\) suy ra \(\frac{AI}{AI+IH}=\frac{AB}{AB+BH}\) hay \(\frac{AI}{8}=\frac{10}{10+6}=\frac{5}{8}\). Vậy \(AI=5\)cm.

Vững vàng kiến thức, bứt phá điểm số Toán 8! Đừng bỏ lỡ Giải bài 69 trang 85 sách bài tập toán 8 – Cánh diều đặc sắc thuộc chuyên mục giải sách giáo khoa toán 8 trên toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát từng chi tiết chương trình sách giáo khoa, con bạn sẽ củng cố kiến thức nền tảng vững chắc và dễ dàng chinh phục các dạng bài khó. Phương pháp học trực quan, logic sẽ giúp các em tối ưu hóa quá trình ôn luyện và đạt hiệu quả học tập tối đa!

Giải bài 69 trang 85 Sách bài tập Toán 8 Cánh Diều: Tổng quan

Bài 69 trang 85 sách bài tập Toán 8 Cánh Diều thuộc chương trình học Toán 8, tập trung vào việc ôn tập và củng cố kiến thức về các dạng bài tập liên quan đến hình học, cụ thể là các tính chất của hình thang cân. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các vấn đề thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.

Nội dung bài tập

Bài 69 trang 85 sách bài tập Toán 8 Cánh Diều thường bao gồm các dạng bài tập sau:

  • Bài tập 1: Chứng minh một hình thang cân có các tính chất đặc biệt.
  • Bài tập 2: Tính độ dài các cạnh, đường chéo của hình thang cân khi biết một số thông tin nhất định.
  • Bài tập 3: Giải các bài toán thực tế liên quan đến hình thang cân.

Hướng dẫn giải chi tiết bài 69 trang 85

Để giải bài 69 trang 85 sách bài tập Toán 8 Cánh Diều một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  • Định nghĩa hình thang cân: Hình thang cân là hình thang có hai cạnh đáy song song và hai cạnh bên bằng nhau.
  • Tính chất của hình thang cân:
    • Hai góc kề một đáy bằng nhau.
    • Hai đường chéo bằng nhau.
    • Tổng hai góc kề một cạnh bên bằng 180 độ.
  • Các định lý liên quan đến hình thang cân: Định lý về đường trung bình của hình thang, định lý về đường cao của hình thang cân.

Ví dụ minh họa

Bài toán: Cho hình thang cân ABCD (AB // CD), AB = 5cm, CD = 10cm, AD = BC = 6cm. Tính chiều cao của hình thang.

Giải:

  1. Kẻ AH và BK vuông góc với CD (H, K thuộc CD).
  2. Ta có: DH = KC = (CD - AB) / 2 = (10 - 5) / 2 = 2.5cm.
  3. Áp dụng định lý Pitago vào tam giác ADH vuông tại H, ta có: AH2 = AD2 - DH2 = 62 - 2.52 = 36 - 6.25 = 29.75.
  4. Suy ra: AH = √29.75 ≈ 5.45cm.
  5. Vậy, chiều cao của hình thang là 5.45cm.

Mẹo giải bài tập hình thang cân

Để giải các bài tập về hình thang cân một cách nhanh chóng và chính xác, bạn có thể áp dụng một số mẹo sau:

  • Vẽ hình: Vẽ hình chính xác và đầy đủ các yếu tố của bài toán.
  • Sử dụng các tính chất: Vận dụng các tính chất của hình thang cân để giải quyết bài toán.
  • Chia nhỏ bài toán: Chia bài toán lớn thành các bài toán nhỏ hơn để dễ dàng giải quyết.
  • Kiểm tra lại kết quả: Sau khi giải xong bài toán, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Luyện tập thêm

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về hình thang cân, bạn có thể tham khảo thêm các bài tập sau:

  • Bài 70 trang 85 sách bài tập Toán 8 Cánh Diều.
  • Các bài tập tương tự trong các sách bài tập Toán 8 khác.
  • Các bài tập trực tuyến trên các trang web học Toán.

Kết luận

Hy vọng rằng, với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn đã có thể giải bài 69 trang 85 sách bài tập Toán 8 Cánh Diều một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 8