Logo Header
  1. Môn Toán
  2. Giải bài tập 1 trang 26 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 1 trang 26 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 1 trang 26 SGK Toán 12 tập 2 - Cánh diều

Chào mừng các em học sinh đến với lời giải chi tiết bài tập 1 trang 26 SGK Toán 12 tập 2 - Cánh diều. Tại giaitoan.edu.vn, chúng tôi cung cấp đáp án chính xác, dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập toán học.

Bài tập này thuộc chương trình học Toán 12 tập 2, tập trung vào các kiến thức về đạo hàm và ứng dụng của đạo hàm.

Tính tích phân (intlimits_2^3 {frac{1}{{{x^2}}}} dx) có giá trị bằng: A. (frac{1}{6}) B. ( - frac{1}{6}) C. (frac{{19}}{{648}}) D. ( - frac{{19}}{{648}})

Đề bài

Tính tích phân \(\int\limits_2^3 {\frac{1}{{{x^2}}}} dx\) có giá trị bằng:

A. \(\frac{1}{6}\)

B. \( - \frac{1}{6}\)

C. \(\frac{{19}}{{648}}\)

D. \( - \frac{{19}}{{648}}\)

Phương pháp giải - Xem chi tiếtGiải bài tập 1 trang 26 SGK Toán 12 tập 2 - Cánh diều 1

Cho hàm số f(x) liên tục trên đoạn [a;b]. Giả sử F(x) là nguyên hàm của f(x) trên đoạn [a;b]. Hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu là \(\int\limits_a^b {f(x)} dx\)

Lời giải chi tiết

\(\int\limits_2^3 {\frac{1}{{{x^2}}}} dx = \left. { - \frac{1}{x}} \right|_2^3 = - \frac{1}{3} - \left( { - \frac{1}{2}} \right) = \frac{1}{6}\)

Chọn A

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 1 trang 26 SGK Toán 12 tập 2 - Cánh diều đặc sắc thuộc chuyên mục đề toán 12 trên nền tảng tài liệu toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 1 trang 26 SGK Toán 12 tập 2 - Cánh diều: Tổng quan và Phương pháp giải

Bài tập 1 trang 26 SGK Toán 12 tập 2 - Cánh diều yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, quy tắc tính đạo hàm và các ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung chi tiết bài tập 1 trang 26

Bài tập 1 bao gồm các câu hỏi nhỏ, yêu cầu học sinh tính đạo hàm của các hàm số cho trước. Các hàm số này có thể là hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit hoặc các hàm hợp. Để tính đạo hàm, học sinh cần áp dụng các quy tắc tính đạo hàm tương ứng với từng loại hàm số.

Hướng dẫn giải chi tiết từng câu hỏi

Câu a: Tính đạo hàm của hàm số f(x) = x^3 - 3x^2 + 2x - 1

Để tính đạo hàm của hàm số f(x) = x^3 - 3x^2 + 2x - 1, ta áp dụng quy tắc tính đạo hàm của tổng và hiệu, cũng như quy tắc tính đạo hàm của lũy thừa:

  1. f'(x) = d/dx (x^3) - d/dx (3x^2) + d/dx (2x) - d/dx (1)
  2. f'(x) = 3x^2 - 6x + 2 - 0
  3. f'(x) = 3x^2 - 6x + 2

Câu b: Tính đạo hàm của hàm số g(x) = sin(2x) + cos(x)

Để tính đạo hàm của hàm số g(x) = sin(2x) + cos(x), ta áp dụng quy tắc tính đạo hàm của hàm hợp và quy tắc tính đạo hàm của hàm lượng giác:

  1. g'(x) = d/dx (sin(2x)) + d/dx (cos(x))
  2. g'(x) = cos(2x) * d/dx (2x) - sin(x)
  3. g'(x) = 2cos(2x) - sin(x)

Câu c: Tính đạo hàm của hàm số h(x) = e^x + ln(x)

Để tính đạo hàm của hàm số h(x) = e^x + ln(x), ta áp dụng quy tắc tính đạo hàm của hàm mũ và hàm logarit:

  1. h'(x) = d/dx (e^x) + d/dx (ln(x))
  2. h'(x) = e^x + 1/x

Lưu ý quan trọng khi giải bài tập

  • Nắm vững các quy tắc tính đạo hàm cơ bản.
  • Áp dụng đúng quy tắc tính đạo hàm cho từng loại hàm số.
  • Kiểm tra lại kết quả sau khi tính đạo hàm.
  • Luyện tập thường xuyên để nâng cao kỹ năng giải bài tập.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Tìm cực trị của hàm số.
  • Xác định khoảng đơn điệu của hàm số.
  • Giải các bài toán tối ưu hóa.
  • Tính vận tốc và gia tốc trong vật lý.
  • Phân tích sự thay đổi của các đại lượng trong kinh tế.

Bài tập tương tự để luyện tập

Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, các em có thể tham khảo các bài tập tương tự sau:

  • Tính đạo hàm của hàm số y = 2x^4 - 5x^3 + x - 7
  • Tính đạo hàm của hàm số y = tan(x) + cot(x)
  • Tính đạo hàm của hàm số y = log_2(x) + 2^x

Kết luận

Bài tập 1 trang 26 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm và ứng dụng đạo hàm trong việc giải quyết các bài toán thực tế. Hy vọng với hướng dẫn chi tiết này, các em sẽ tự tin giải quyết bài tập một cách hiệu quả.

Tài liệu, đề thi và đáp án Toán 12