Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 9 trang 64 SGK Toán 12 tập 2 theo chương trình Cánh diều.
Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và giúp bạn nắm vững kiến thức Toán học.
a) Cho hai mặt phẳng \(({P_1}):x + 2y + 3z + 4 = 0,({P_2}):x + y - z + 5 = 0\). Chứng minh rằng \(({P_1}) \bot ({P_2})\) b) Cho mặt phẳng \((P):x - 2y - 2z + 1 = 0\) và điểm M(1;1;-6). Tính khoảng cách từ điểm M đến mặt phẳng (P)
Đề bài
a) Cho hai mặt phẳng \(({P_1}):x + 2y + 3z + 4 = 0,({P_2}):x + y - z + 5 = 0\). Chứng minh rằng \(({P_1}) \bot ({P_2})\)
b) Cho mặt phẳng \((P):x - 2y - 2z + 1 = 0\) và điểm M(1;1;-6). Tính khoảng cách từ điểm M đến mặt phẳng (P)
Phương pháp giải - Xem chi tiết
a) Chứng minh vecto pháp tuyến của hai mặt phẳng vuông góc với nhau
b) M(a;b;c), (P): Ax + By + Cz + D = 0. Ta có: \(d(M;(P)) = \frac{{\left| {A.a + B.b + C.c + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\)
Lời giải chi tiết
a) Ta có: \(\overrightarrow {{n_1}} = (1;2;3);\overrightarrow {{n_2}} = (1;1; - 1)\)
\(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 1.1 + 2.1 + 3.( - 1) = 0 \Leftrightarrow \overrightarrow {{n_1}} \bot \overrightarrow {{n_2}} \)
Do đó: \(({P_1}) \bot ({P_2})\)
b) \(d(M;(P)) = \frac{{\left| {1.1 - 2.1 - 2.( - 6) + 1} \right|}}{{\sqrt {{1^2} + {{( - 2)}^2} + {{( - 2)}^2}} }} = 4\)
Bài tập 9 trang 64 SGK Toán 12 tập 2 thuộc chương trình Cánh diều, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của đại lượng. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài tập 9 thường có dạng như sau: Một vật thể chuyển động theo một quỹ đạo được mô tả bởi hàm số vị trí s(t). Yêu cầu là tìm vận tốc và gia tốc của vật thể tại một thời điểm cụ thể, hoặc xác định thời điểm vật thể đạt vận tốc cực đại/cực tiểu.
Bài toán: Một vật thể chuyển động theo hàm số vị trí s(t) = t3 - 6t2 + 9t + 2 (trong đó s tính bằng mét và t tính bằng giây). Tìm vận tốc và gia tốc của vật thể tại thời điểm t = 2 giây.
Giải:
Kết luận: Tại thời điểm t = 2 giây, vận tốc của vật thể là -3 m/s và gia tốc là 0 m/s2.
Ngoài dạng bài tập tìm vận tốc và gia tốc tại một thời điểm cụ thể, bài tập 9 trang 64 SGK Toán 12 tập 2 - Cánh diều còn có thể xuất hiện các dạng bài tập khác như:
Để giải quyết các dạng bài tập này, bạn cần áp dụng các kiến thức về đạo hàm, cực trị và khoảng đơn điệu của hàm số.
Ngoài SGK Toán 12 tập 2 - Cánh diều, bạn có thể tham khảo thêm các tài liệu sau để hỗ trợ học tập:
Bài tập 9 trang 64 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin giải quyết bài tập này một cách hiệu quả.