Logo Header
  1. Môn Toán
  2. Giải bài tập 9 trang 41 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 9 trang 41 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 9 trang 41 SGK Toán 12 tập 2 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 9 trang 41 SGK Toán 12 tập 2 theo chương trình Cánh diều.

Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và giúp bạn nắm vững kiến thức Toán học.

Cho tam giác vuông OPM có cạnh OP nằm trên trục Ox. Giả sử \(\widehat {POM} = \alpha ,OM = l(0 \le \alpha \le \frac{\pi }{3};l > 0)\). Gọi \({\rm N}\) là khối tròn xoay thu được khi quay tam giác đó xung quanh trục Ox (Hình 35). Tính thể tích của \({\rm N}\) theo \(\alpha \) và \(l\)

Đề bài

Cho tam giác vuông OPM có cạnh OP nằm trên trục Ox. Giả sử \(\widehat {POM} = \alpha ,OM = l(0 \le \alpha \le \frac{\pi }{3};l > 0)\). Gọi \({\rm N}\) là khối tròn xoay thu được khi quay tam giác đó xung quanh trục Ox (Hình 35). Tính thể tích của \({\rm N}\) theo \(\alpha \) và \(l\)

Giải bài tập 9 trang 41 SGK Toán 12 tập 2 - Cánh diều 1

Phương pháp giải - Xem chi tiếtGiải bài tập 9 trang 41 SGK Toán 12 tập 2 - Cánh diều 2

Sử dụng công thức tính thể tích hình nón

Lời giải chi tiết

Xét tam giác vuông OPM:

\(MP = OM.\sin \widehat {POM} = l.\sin \alpha \)

\(OP = OM.\cos \widehat {POM} = l.\cos \alpha \)

Khối tròn xoay là một hình nón có diện tích là: \(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {\left( {l.\sin \alpha } \right)^2}.l.\cos \alpha = \frac{1}{3}\pi {l^3}.{\sin ^2}\alpha \cos \alpha \)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 9 trang 41 SGK Toán 12 tập 2 - Cánh diều đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng toán math. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 9 trang 41 SGK Toán 12 tập 2 - Cánh diều: Tổng quan

Bài tập 9 trang 41 SGK Toán 12 tập 2 thuộc chương trình Cánh diều, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của đại lượng. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập 9 trang 41 SGK Toán 12 tập 2 - Cánh diều

Bài tập 9 thường có dạng như sau: Một vật thể chuyển động theo một quỹ đạo được mô tả bởi hàm số vị trí s(t). Yêu cầu là tìm vận tốc và gia tốc của vật thể tại một thời điểm cụ thể, hoặc xác định thời điểm vật thể đạt vận tốc cực đại/cực tiểu.

Phương pháp giải bài tập 9 trang 41 SGK Toán 12 tập 2 - Cánh diều

  1. Xác định hàm số vị trí s(t): Đọc kỹ đề bài để xác định hàm số mô tả vị trí của vật thể theo thời gian.
  2. Tính vận tốc v(t): Vận tốc là đạo hàm của hàm số vị trí theo thời gian: v(t) = s'(t).
  3. Tính gia tốc a(t): Gia tốc là đạo hàm của hàm số vận tốc theo thời gian: a(t) = v'(t) = s''(t).
  4. Giải quyết yêu cầu của bài toán: Thay các giá trị thời gian cụ thể vào các hàm vận tốc và gia tốc để tìm các giá trị tương ứng.

Ví dụ minh họa giải bài tập 9 trang 41 SGK Toán 12 tập 2 - Cánh diều

Đề bài: Một vật thể chuyển động theo hàm số vị trí s(t) = t3 - 6t2 + 9t + 2 (trong đó s tính bằng mét và t tính bằng giây). Tìm vận tốc và gia tốc của vật thể tại thời điểm t = 2 giây.

Giải:

  • Tính vận tốc v(t): v(t) = s'(t) = 3t2 - 12t + 9
  • Tính gia tốc a(t): a(t) = v'(t) = 6t - 12
  • Tính vận tốc tại t = 2: v(2) = 3(2)2 - 12(2) + 9 = 12 - 24 + 9 = -3 m/s
  • Tính gia tốc tại t = 2: a(2) = 6(2) - 12 = 12 - 12 = 0 m/s2

Kết luận: Tại thời điểm t = 2 giây, vận tốc của vật thể là -3 m/s và gia tốc là 0 m/s2.

Các dạng bài tập tương tự và cách tiếp cận

Ngoài dạng bài tập tìm vận tốc và gia tốc tại một thời điểm cụ thể, bài tập 9 trang 41 SGK Toán 12 tập 2 - Cánh diều còn có thể xuất hiện các dạng bài tập khác như:

  • Tìm thời điểm vật thể đạt vận tốc cực đại/cực tiểu.
  • Xác định khoảng thời gian vật thể chuyển động nhanh dần/chậm dần.
  • Tính quãng đường vật thể đi được trong một khoảng thời gian nhất định.

Để giải quyết các dạng bài tập này, bạn cần vận dụng các kiến thức về đạo hàm, cực trị, và khoảng đơn điệu của hàm số một cách linh hoạt.

Lưu ý khi giải bài tập 9 trang 41 SGK Toán 12 tập 2 - Cánh diều

  • Đọc kỹ đề bài và xác định rõ các đại lượng đã cho và yêu cầu của bài toán.
  • Sử dụng đúng các công thức tính đạo hàm và các quy tắc liên quan.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng giải bài tập.

Tài liệu tham khảo và hỗ trợ học tập

Ngoài SGK Toán 12 tập 2 - Cánh diều, bạn có thể tham khảo thêm các tài liệu sau để hỗ trợ học tập:

  • Sách bài tập Toán 12.
  • Các trang web học toán online uy tín như giaitoan.edu.vn.
  • Các video bài giảng trên YouTube.

Kết luận

Bài tập 9 trang 41 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, bạn sẽ tự tin hơn khi giải quyết các bài tập tương tự.

Tài liệu, đề thi và đáp án Toán 12