Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.
Khảo sát sự biến thiên của các hàm số sau: a, \(y = \frac{{x - 1}}{{x + 1}}\) b,\(y = \frac{{ - 2x}}{{x + 1}}\) c,\(y=\frac{{{x^2} - 3x + 6}}{{x - 1}}\) d,\(y = \frac{{ - {x^2} + 2x - 4}}{{x - 2}}\) e,\(y = \frac{{2{x^2} + 3x - 5}}{{x + 2}}\) g,\(y = \frac{{{x^2} - 2x - 3}}{{ - x + 2}}\)
Đề bài
Khảo sát sự biến thiên của các hàm số sau:
a, \(y = \frac{{x - 1}}{{x + 1}}\)
b,\(y = \frac{{ - 2x}}{{x + 1}}\)
c,\(y=\frac{{{x^2} - 3x + 6}}{{x - 1}}\)
d,\(y = \frac{{ - {x^2} + 2x - 4}}{{x - 2}}\)
e,\(y = \frac{{2{x^2} + 3x - 5}}{{x + 2}}\)
g,\(y = \frac{{{x^2} - 2x - 3}}{{ - x + 2}}\)
Lời giải chi tiết
a) \(y = \frac{{x - 1}}{{x + 1}}\)
1) TXĐ: \(x \in \mathbb{R}\left\{ { - 1} \right\}\)
2) Sự biến thiên
\(y' = \frac{2}{{{{\left( {x + 1} \right)}^2}}} > 0\;\) với mọi \(x \ne - 1\)
Bảng biến thiên:
Hàm số đồng biến trên khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\)
Hàm số không có cực trị
3) Đồ thị
Giao điểm đồ thị với trục tung: \(\left( {0; - 1} \right)\)
Giao điểm đồ thị với trục hoành: \(\left( {1;0} \right)\)
Đồ thị đi qua các điểm: \(\left( {0; - 1} \right)\), \(\left( {1;0} \right)\)
b) \(y = \frac{{ - 2x}}{{x + 1}}\)
1) TXĐ: \(x \in \mathbb{R}\backslash \left\{ { - 1} \right\}\)
2) Sự biến thiên
với mọi \(x \ne - 1\)
Bảng biến thiên:
Hàm số nghịch biến trên khoảng \(\left( { - \infty , - 1} \right) \cup \left( { - 1,\infty } \right)\)
3) Đồ thị
Giao điểm đồ thị với trục tung: \(\left( {0;0} \right)\)
Giao điểm đồ thị với trục hoành: \(\left( {0;0} \right)\)
c) \(y = \frac{{{x^2} - 3x + 6}}{{x - 1}}\)
1) TXĐ: \(x \in \mathbb{R}\backslash \left\{ 1 \right\}\)
2) Sự biến thiên
Ta có \(y = \frac{{{x^2} - 3x + 6}}{{x - 1}}\)\( = x - 2 + \frac{4}{{x - 1}}\)
\(y' = 1 - \frac{4}{{{{(x - 1)}^2}}}\)\( = \frac{{{x^2} - 2x - 3}}{{{{(x - 1)}^2}}}\)
Xét \(y' = 0\)\( \Rightarrow \left[ \begin{array}{l}x = 3\\x = - 1\end{array} \right.\)
Bảng biến thiên
Hàm số đồng biến trên khoảng \(\left( { - \infty , - 1} \right),\left( {3, + \infty } \right)\). Nghịch biến trên khoảng \(\left( { - 1,1} \right),\left( {1,3} \right)\)
3) Đồ thị
Giao điểm đồ thị với trục tung: \(\left( {0; - 6} \right)\)
d) \(y = \frac{{ - {x^2} + 2x - 4}}{{x - 2}}\)
Hàm số trên xác định trên R\{2}
Ta có \(y = \frac{{ - {x^2} + 2x - 4}}{{x - 2}}\)\( = - x - \frac{4}{{x - 2}}\)
\(y' = - 1 + \frac{4}{{{{(x - 2)}^2}}}\)\( = \frac{{ - {x^2} + 4x}}{{{{(x - 2)}^2}}}\)
Xét \(y' = 0\)\( \Rightarrow \left[ \begin{array}{l}x = 0\\x = 4\end{array} \right.\)
Từ đó ta có bảng biến thiên là
Từ bảng biến thiên ta thấy
Hàm số đồng biến \(y = \frac{{ - {x^2} + 2x - 4}}{{x - 2}}\)trên các khoảng \((0;2)\) và \((2;4)\)
Hàm số nghịch biến \(y = \frac{{ - {x^2} + 2x - 4}}{{x - 2}}\)trên các khoảng \(( - \infty ;0)\) và \((4; + \infty )\)
Ta có đồ thị hàm số là
e) \(y = \frac{{2{x^2} + 3x - 5}}{{x + 2}}\)
Hàm số xác định trên R\{-2}
Ta có \(y = \frac{{2{x^2} + 3x - 5}}{{x + 2}}\) \( = 2x - \frac{{x + 5}}{{x + 2}}\)
\(y' = 2 + \frac{3}{{{{(x + 2)}^2}}}\)
Vì \(y' > 0\)với \(x \in R/\left\{ { - 2} \right\}\)
Nên hàm số luôn đồng biến với \(x \in R/\left\{ { - 2} \right\}\)
Ta có đồ thị hàm số là
g) \(y = \frac{{{x^2} - 2x - 3}}{{ - x + 2}}\)
Hàm số xác định trên R/{2}
Ta có : \(y = \frac{{{x^2} - 2x - 3}}{{ - x + 2}}\) \( = - x + \frac{3}{{x - 2}}\)
\(y' = - 1 - \frac{3}{{{{(x - 2)}^2}}}\)
Vì \(y' < 0\)với \(x \in R/\left\{ 2 \right\}\)
Nên hàm số luôn nghịch biến với \(x \in R/\left\{ 2 \right\}\)
Ta có đồ thị hàm số là
Bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn một bên, giới hạn tại một điểm và các tính chất của giới hạn để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là rất quan trọng để đạt kết quả tốt trong môn Toán.
Bài tập 6 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh tính giới hạn của hàm số tại một điểm cho trước. Các hàm số có thể là hàm đa thức, hàm hữu tỉ, hoặc các hàm số khác. Để giải quyết bài tập này, học sinh cần:
Có nhiều phương pháp để giải bài tập về giới hạn, tùy thuộc vào dạng của hàm số. Một số phương pháp thường được sử dụng bao gồm:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều:
Đề bài: Tính limx→2 (x2 - 4) / (x - 2)
Lời giải:
Ta có: (x2 - 4) / (x - 2) = (x - 2)(x + 2) / (x - 2) = x + 2 (với x ≠ 2)
Vậy, limx→2 (x2 - 4) / (x - 2) = limx→2 (x + 2) = 2 + 2 = 4
Đề bài: Tính limx→-1 (x3 + 1) / (x + 1)
Lời giải:
Ta có: (x3 + 1) / (x + 1) = (x + 1)(x2 - x + 1) / (x + 1) = x2 - x + 1 (với x ≠ -1)
Vậy, limx→-1 (x3 + 1) / (x + 1) = limx→-1 (x2 - x + 1) = (-1)2 - (-1) + 1 = 1 + 1 + 1 = 3
Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:
Bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh hiểu rõ hơn về khái niệm giới hạn và các phương pháp tính giới hạn. Hy vọng với lời giải chi tiết và các lưu ý trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!