Logo Header
  1. Môn Toán
  2. Giải bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều

Giải bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều

Giải bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.

Khảo sát sự biến thiên của các hàm số sau: a, \(y = \frac{{x - 1}}{{x + 1}}\) b,\(y = \frac{{ - 2x}}{{x + 1}}\) c,\(y=\frac{{{x^2} - 3x + 6}}{{x - 1}}\) d,\(y = \frac{{ - {x^2} + 2x - 4}}{{x - 2}}\) e,\(y = \frac{{2{x^2} + 3x - 5}}{{x + 2}}\) g,\(y = \frac{{{x^2} - 2x - 3}}{{ - x + 2}}\)

Đề bài

Khảo sát sự biến thiên của các hàm số sau:

a, \(y = \frac{{x - 1}}{{x + 1}}\)

b,\(y = \frac{{ - 2x}}{{x + 1}}\)

c,\(y=\frac{{{x^2} - 3x + 6}}{{x - 1}}\)

d,\(y = \frac{{ - {x^2} + 2x - 4}}{{x - 2}}\)

e,\(y = \frac{{2{x^2} + 3x - 5}}{{x + 2}}\)

g,\(y = \frac{{{x^2} - 2x - 3}}{{ - x + 2}}\)

Lời giải chi tiết

a) \(y = \frac{{x - 1}}{{x + 1}}\)

1) TXĐ: \(x \in \mathbb{R}\left\{ { - 1} \right\}\)

2) Sự biến thiên

\(y' = \frac{2}{{{{\left( {x + 1} \right)}^2}}} > 0\;\) với mọi \(x \ne - 1\)

Bảng biến thiên:

Giải bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều 1

Hàm số đồng biến trên khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\)

Hàm số không có cực trị

3) Đồ thị

Giao điểm đồ thị với trục tung: \(\left( {0; - 1} \right)\)

Giao điểm đồ thị với trục hoành: \(\left( {1;0} \right)\)

Đồ thị đi qua các điểm: \(\left( {0; - 1} \right)\), \(\left( {1;0} \right)\)

Giải bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều 2

b) \(y = \frac{{ - 2x}}{{x + 1}}\)

1) TXĐ: \(x \in \mathbb{R}\backslash \left\{ { - 1} \right\}\)

2) Sự biến thiên

 với mọi \(x \ne - 1\)

Bảng biến thiên:

Giải bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều 3

Hàm số nghịch biến trên khoảng \(\left( { - \infty , - 1} \right) \cup \left( { - 1,\infty } \right)\)

3) Đồ thị

Giao điểm đồ thị với trục tung: \(\left( {0;0} \right)\)

Giao điểm đồ thị với trục hoành: \(\left( {0;0} \right)\)

Giải bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều 4

c) \(y = \frac{{{x^2} - 3x + 6}}{{x - 1}}\)

1) TXĐ: \(x \in \mathbb{R}\backslash \left\{ 1 \right\}\)

2) Sự biến thiên

Ta có \(y = \frac{{{x^2} - 3x + 6}}{{x - 1}}\)\( = x - 2 + \frac{4}{{x - 1}}\)

\(y' = 1 - \frac{4}{{{{(x - 1)}^2}}}\)\( = \frac{{{x^2} - 2x - 3}}{{{{(x - 1)}^2}}}\)

Xét \(y' = 0\)\( \Rightarrow \left[ \begin{array}{l}x = 3\\x = - 1\end{array} \right.\)

Bảng biến thiên

Giải bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều 5

Hàm số đồng biến trên khoảng \(\left( { - \infty , - 1} \right),\left( {3, + \infty } \right)\). Nghịch biến trên khoảng \(\left( { - 1,1} \right),\left( {1,3} \right)\)

3) Đồ thị

Giao điểm đồ thị với trục tung: \(\left( {0; - 6} \right)\)

Giải bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều 6

d) \(y = \frac{{ - {x^2} + 2x - 4}}{{x - 2}}\)

Hàm số trên xác định trên R\{2}

Ta có \(y = \frac{{ - {x^2} + 2x - 4}}{{x - 2}}\)\( = - x - \frac{4}{{x - 2}}\)

\(y' = - 1 + \frac{4}{{{{(x - 2)}^2}}}\)\( = \frac{{ - {x^2} + 4x}}{{{{(x - 2)}^2}}}\)

Xét \(y' = 0\)\( \Rightarrow \left[ \begin{array}{l}x = 0\\x = 4\end{array} \right.\)

Từ đó ta có bảng biến thiên là

Giải bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều 7

Từ bảng biến thiên ta thấy

Hàm số đồng biến \(y = \frac{{ - {x^2} + 2x - 4}}{{x - 2}}\)trên các khoảng \((0;2)\) và \((2;4)\)

Hàm số nghịch biến \(y = \frac{{ - {x^2} + 2x - 4}}{{x - 2}}\)trên các khoảng \(( - \infty ;0)\) và \((4; + \infty )\)

Ta có đồ thị hàm số là

Giải bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều 8

e) \(y = \frac{{2{x^2} + 3x - 5}}{{x + 2}}\)

Hàm số xác định trên R\{-2}

Ta có \(y = \frac{{2{x^2} + 3x - 5}}{{x + 2}}\) \( = 2x - \frac{{x + 5}}{{x + 2}}\)

\(y' = 2 + \frac{3}{{{{(x + 2)}^2}}}\)

Vì \(y' > 0\)với \(x \in R/\left\{ { - 2} \right\}\)

Nên hàm số luôn đồng biến với \(x \in R/\left\{ { - 2} \right\}\)

Ta có đồ thị hàm số là

Giải bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều 9

g) \(y = \frac{{{x^2} - 2x - 3}}{{ - x + 2}}\)

Hàm số xác định trên R/{2}

Ta có : \(y = \frac{{{x^2} - 2x - 3}}{{ - x + 2}}\) \( = - x + \frac{3}{{x - 2}}\)

\(y' = - 1 - \frac{3}{{{{(x - 2)}^2}}}\)

Vì \(y' < 0\)với \(x \in R/\left\{ 2 \right\}\)

Nên hàm số luôn nghịch biến với \(x \in R/\left\{ 2 \right\}\)

Ta có đồ thị hàm số là 

Giải bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều 10

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều đặc sắc thuộc chuyên mục bài tập toán 12 trên nền tảng toán học. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều: Tổng quan

Bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn một bên, giới hạn tại một điểm và các tính chất của giới hạn để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là rất quan trọng để đạt kết quả tốt trong môn Toán.

Nội dung bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều

Bài tập 6 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh tính giới hạn của hàm số tại một điểm cho trước. Các hàm số có thể là hàm đa thức, hàm hữu tỉ, hoặc các hàm số khác. Để giải quyết bài tập này, học sinh cần:

  • Xác định đúng dạng của hàm số.
  • Áp dụng các quy tắc tính giới hạn phù hợp.
  • Kiểm tra điều kiện tồn tại giới hạn.

Phương pháp giải bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều

Có nhiều phương pháp để giải bài tập về giới hạn, tùy thuộc vào dạng của hàm số. Một số phương pháp thường được sử dụng bao gồm:

  1. Phương pháp trực tiếp: Thay trực tiếp giá trị của x vào hàm số để tính giới hạn. Phương pháp này chỉ áp dụng được khi hàm số liên tục tại điểm đó.
  2. Phương pháp phân tích thành nhân tử: Phân tích tử số và mẫu số thành nhân tử để rút gọn biểu thức, sau đó thay giá trị của x vào để tính giới hạn.
  3. Phương pháp nhân liên hợp: Nhân tử số và mẫu số với biểu thức liên hợp để khử dạng vô định.
  4. Phương pháp sử dụng định lý giới hạn: Áp dụng các định lý về giới hạn để tính giới hạn của hàm số.

Lời giải chi tiết bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều

Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều:

Câu a)

Đề bài: Tính limx→2 (x2 - 4) / (x - 2)

Lời giải:

Ta có: (x2 - 4) / (x - 2) = (x - 2)(x + 2) / (x - 2) = x + 2 (với x ≠ 2)

Vậy, limx→2 (x2 - 4) / (x - 2) = limx→2 (x + 2) = 2 + 2 = 4

Câu b)

Đề bài: Tính limx→-1 (x3 + 1) / (x + 1)

Lời giải:

Ta có: (x3 + 1) / (x + 1) = (x + 1)(x2 - x + 1) / (x + 1) = x2 - x + 1 (với x ≠ -1)

Vậy, limx→-1 (x3 + 1) / (x + 1) = limx→-1 (x2 - x + 1) = (-1)2 - (-1) + 1 = 1 + 1 + 1 = 3

Lưu ý khi giải bài tập về giới hạn

  • Luôn kiểm tra điều kiện xác định của hàm số.
  • Sử dụng các quy tắc tính giới hạn một cách chính xác.
  • Rút gọn biểu thức trước khi thay giá trị của x vào.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập vận dụng

Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:

  • Tính limx→3 (x2 - 9) / (x - 3)
  • Tính limx→-2 (x3 + 8) / (x + 2)

Kết luận

Bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh hiểu rõ hơn về khái niệm giới hạn và các phương pháp tính giới hạn. Hy vọng với lời giải chi tiết và các lưu ý trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 12