Logo Header
  1. Môn Toán
  2. Giải bài tập 6 trang 79 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 6 trang 79 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 6 trang 79 SGK Toán 12 tập 2 - Cánh diều

Chào mừng các em học sinh đến với lời giải chi tiết bài tập 6 trang 79 SGK Toán 12 tập 2 - Cánh diều. Tại giaitoan.edu.vn, chúng tôi cung cấp đáp án chính xác, dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập Toán 12.

Bài tập 6 trang 79 thuộc chương trình học Toán 12 tập 2, tập trung vào các kiến thức về...

Xác định vị trí tương đối của hai đường thẳng \({\Delta _1},{\Delta _2}\) trong mỗi trường hợp sau: a) \({\Delta _1}:\frac{{x - 1}}{2} = \frac{{y - 2}}{1} = \frac{{z - 3}}{{ - 1}}\) và \({\Delta _2}:\left\{ \begin{array}{l}x = - 11 - 6t\\y = - 6 - 3t\\z = 10 + 3t\end{array} \right.\) (t là tham số); b) \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + 3t\\y = 2 + 4t\\z = 3 + 5t\end{array} \right.\) (t là tham số) và \({\Delta _2}:\frac{{x + 3}}{1} = \frac{{y + 6}}{2} = \frac{{z - 15}}{{ - 3}}\)

Đề bài

Xác định vị trí tương đối của hai đường thẳng \({\Delta _1},{\Delta _2}\) trong mỗi trường hợp sau:

a) \({\Delta _1}:\frac{{x - 1}}{2} = \frac{{y - 2}}{1} = \frac{{z - 3}}{{ - 1}}\) và \({\Delta _2}:\left\{ \begin{array}{l}x = - 11 - 6t\\y = - 6 - 3t\\z = 10 + 3t\end{array} \right.\) (t là tham số);

b) \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + 3t\\y = 2 + 4t\\z = 3 + 5t\end{array} \right.\) (t là tham số) và \({\Delta _2}:\frac{{x + 3}}{1} = \frac{{y + 6}}{2} = \frac{{z - 15}}{{ - 3}}\);

c) \({\Delta _1}:\frac{{x + 1}}{4} = \frac{{y - 1}}{3} = \frac{z}{1}\) và \({\Delta _2}:\frac{{x - 1}}{1} = \frac{{y - 3}}{2} = \frac{{z - 1}}{2}\).

Phương pháp giải - Xem chi tiếtGiải bài tập 6 trang 79 SGK Toán 12 tập 2 - Cánh diều 1

Sử dụng kiến thức về vị trí tương đối của hai đường thẳng để xét vị trí tương đối giữa hai đường thẳng: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng phân biệt \({\Delta _1},{\Delta _2}\) lần lượt đi qua các điểm \({M_1},{M_2}\) và tương ứng có \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) là hai vectơ chỉ phương. Khi đó, ta có:

\({\Delta _1}//{\Delta _2} \Leftrightarrow \) \(\overrightarrow {{u_1}} \), \(\overrightarrow {{u_2}} \) cùng phương và \(\overrightarrow {{u_1}} ,\overrightarrow {{M_1}{M_2}} \) không cùng phương \( \Leftrightarrow \left\{ \begin{array}{l}\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \overrightarrow 0 \\\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{M_1}{M_2}} } \right] \ne 0\end{array} \right.\).

\({\Delta _1}\) cắt \({\Delta _2}\) \( \Leftrightarrow \overrightarrow {{u_1}} \), \(\overrightarrow {{u_2}} \) không cùng phương và \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} ,\overrightarrow {{M_1}{M_2}} \) đồng phẳng \( \Leftrightarrow \left\{ \begin{array}{l}\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] \ne \overrightarrow 0 \\\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}} = 0\end{array} \right.\).

\({\Delta _1}\) và \({\Delta _2}\) chéo nhau \( \Leftrightarrow \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}} \ne 0\).

Lời giải chi tiết

a) Đường thẳng \({\Delta _1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {2;1; - 1} \right)\) và đi qua điểm \(A\left( {1;2;3} \right)\).

Đường thẳng \({\Delta _2}\) có vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( { - 6; - 3;3} \right)\) và đi qua điểm \(B\left( { - 11; - 6;10} \right)\).

Vì \( - 3\overrightarrow {{u_1}} = \left( { - 6; - 3;3} \right) = \overrightarrow {{u_2}} \), suy ra \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) cùng phương.

Lại có: \(\overrightarrow {AB} = \left( { - 12; - 8;7} \right)\) và \(\frac{2}{{ - 12}} \ne \frac{1}{{ - 8}}\) nên \(\overrightarrow {{u_1}} ,\overrightarrow {{M_1}{M_2}} \) không cùng phương.

Vậy \({\Delta _1}//{\Delta _2}\).

b) Đường thẳng \({\Delta _1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {3;4;5} \right)\) và đi qua điểm \(A\left( {1;2;3} \right)\).

Đường thẳng \({\Delta _2}\) có vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( {1;2; - 3} \right)\) và đi qua điểm \(B\left( { - 3; - 6;15} \right)\).

Ta có: \(\frac{3}{1} \ne \frac{4}{2}\) nên \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) không cùng phương.

Lại có: \(\overrightarrow {AB} = \left( { - 4; - 8;12} \right)\), \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&5\\2&{ - 3}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}5&3\\{ - 3}&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&4\\1&2\end{array}} \right|} \right) = \left( { - 22;14;2} \right)\)

Vì \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {AB} = \left( { - 22} \right).\left( { - 4} \right) + 14.\left( { - 8} \right) + 2.12 = 0\) nên \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} ,\overrightarrow {AB} \) đồng phẳng. Vậy \({\Delta _1}\) cắt \({\Delta _2}\).

c) Đường thẳng \({\Delta _1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {4;3;1} \right)\) và đi qua điểm \(A\left( { - 1;1;0} \right)\).

Đường thẳng \({\Delta _2}\) có vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( {1;2;2} \right)\) và đi qua điểm \(B\left( {1;3;1} \right)\).

Ta có: \(\frac{4}{1} \ne \frac{3}{2}\) nên \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) không cùng phương.

Lại có: \(\overrightarrow {AB} = \left( {2;2;1} \right)\), \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}3&1\\2&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&4\\2&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}4&3\\1&2\end{array}} \right|} \right) = \left( {4; - 7;5} \right)\)

Vì \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {AB} = 4.2 - 7.2 + 5.1 = - 1 \ne 0\) nên \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} ,\overrightarrow {AB} \) không đồng phẳng. Vậy \({\Delta _1}\) và \({\Delta _2}\) chéo nhau.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 6 trang 79 SGK Toán 12 tập 2 - Cánh diều đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng học toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 6 trang 79 SGK Toán 12 tập 2 - Cánh diều: Hướng dẫn chi tiết

Bài tập 6 trang 79 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng trong chương trình học, đòi hỏi học sinh phải nắm vững kiến thức về... (nội dung kiến thức liên quan đến bài tập). Dưới đây là lời giải chi tiết, từng bước, giúp các em hiểu rõ cách giải bài tập này.

Phân tích đề bài

Trước khi đi vào giải bài tập, chúng ta cần phân tích đề bài để xác định rõ yêu cầu và các dữ kiện đã cho. Bài tập 6 yêu cầu chúng ta... (nêu rõ yêu cầu của bài tập).

Lời giải chi tiết

Để giải bài tập này, chúng ta sẽ sử dụng các kiến thức và công thức sau:

  • Công thức 1: ...
  • Công thức 2: ...
  • ...

Các bước giải:

  1. Bước 1: ... (giải thích chi tiết bước 1)
  2. Bước 2: ... (giải thích chi tiết bước 2)
  3. ...

Kết quả: ... (nêu kết quả cuối cùng của bài tập)

Ví dụ minh họa

Để giúp các em hiểu rõ hơn, chúng ta sẽ xem xét một ví dụ minh họa:

Ví dụ: ... (đưa ra một ví dụ tương tự và giải chi tiết)

Lưu ý quan trọng

Khi giải bài tập này, các em cần lưu ý những điểm sau:

  • ... (lưu ý 1)
  • ... (lưu ý 2)
  • ...

Bài tập tương tự

Để củng cố kiến thức, các em có thể thử giải các bài tập tương tự sau:

  • Bài tập 1: ...
  • Bài tập 2: ...
  • ...

Tổng kết

Bài tập 6 trang 79 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng, giúp các em rèn luyện kỹ năng giải toán và củng cố kiến thức. Hy vọng với lời giải chi tiết và các ví dụ minh họa trên, các em sẽ tự tin giải bài tập này và đạt kết quả tốt trong môn Toán.

Mở rộng kiến thức

Để hiểu sâu hơn về chủ đề này, các em có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 12 tập 2 - Cánh diều
  • Sách bài tập Toán 12 tập 2 - Cánh diều
  • Các trang web học toán online uy tín

Bảng tóm tắt công thức

Công thứcMô tả
Công thức 1...
Công thức 2...
......

Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 12