Logo Header
  1. Môn Toán
  2. Giải bài tập 5 trang 42 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 5 trang 42 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 5 trang 42 SGK Toán 12 tập 2 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 5 trang 42 SGK Toán 12 tập 2 theo chương trình Cánh diều, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, dễ hiểu và phù hợp với nhu cầu của học sinh, sinh viên.

a) Cho hàm số \(f(x) = {x^2} + {e^{ - x}}\). Tìm nguyên hàm F(x) của hàm số f(x) trên \(\mathbb{R}\) sao cho F(0) = 2023 b) Cho hàm số \(g(x) = \frac{1}{x}\). Tìm nguyên hàm G(x) của hàm số g(x) trên khoảng \((0; + \infty )\) sao cho G(1) = 2023

Đề bài

a) Cho hàm số \(f(x) = {x^2} + {e^{ - x}}\). Tìm nguyên hàm F(x) của hàm số f(x) trên \(\mathbb{R}\) sao cho F(0) = 2023

b) Cho hàm số \(g(x) = \frac{1}{x}\). Tìm nguyên hàm G(x) của hàm số g(x) trên khoảng \((0; + \infty )\) sao cho G(1) = 2023

Phương pháp giải - Xem chi tiếtGiải bài tập 5 trang 42 SGK Toán 12 tập 2 - Cánh diều 1

Cho hàm số f(x) xác định trên K. Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F’(x) = f(x) với mọi x thuộc K

Lời giải chi tiết

a) \(F(x) = \int {f(x)} = \int {\left( {{x^2} + {e^{ - x}}} \right)dx} = \frac{{{x^3}}}{3} - {e^{ - x}} + C\)

F(0) = 2023 => C = 2024

Vậy \(F(x) = \frac{{{x^3}}}{3} - {e^{ - x}} + 2024\)

b) \(\int {g(x)} = \int {\frac{1}{x}dx} = \ln x + C\)

G(1) = 2023 => C = 2022

Vậy \(G(x) = \ln x + 2023\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 5 trang 42 SGK Toán 12 tập 2 - Cánh diều đặc sắc thuộc chuyên mục toán 12 trên nền tảng đề thi toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 5 trang 42 SGK Toán 12 tập 2 - Cánh diều: Tổng quan

Bài tập 5 trang 42 SGK Toán 12 tập 2 - Cánh diều thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và luyện tập thường xuyên là chìa khóa để giải quyết thành công bài tập này.

Nội dung bài tập 5 trang 42 SGK Toán 12 tập 2 - Cánh diều

Bài tập 5 thường bao gồm các dạng bài sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn thức, đa thức, và các hàm số phức tạp hơn.
  • Áp dụng quy tắc tính đạo hàm: Vận dụng các quy tắc như quy tắc cộng, trừ, nhân, chia, quy tắc hàm hợp để tính đạo hàm.
  • Giải phương trình đạo hàm: Tìm nghiệm của phương trình đạo hàm để xác định các điểm cực trị, điểm uốn của hàm số.
  • Ứng dụng đạo hàm: Sử dụng đạo hàm để giải các bài toán liên quan đến tốc độ thay đổi, tối ưu hóa, và các bài toán thực tế.

Lời giải chi tiết bài tập 5 trang 42 SGK Toán 12 tập 2 - Cánh diều

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi. Lưu ý rằng, trong quá trình giải bài, bạn cần:

  1. Xác định đúng công thức đạo hàm: Chọn công thức đạo hàm phù hợp với từng loại hàm số.
  2. Thực hiện các phép tính chính xác: Tránh sai sót trong quá trình tính toán.
  3. Kiểm tra lại kết quả: Đảm bảo kết quả cuối cùng là chính xác.

Ví dụ minh họa (Giả định một câu hỏi cụ thể trong bài tập 5)

Câu hỏi: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1.

Lời giải:

Áp dụng quy tắc đạo hàm của tổng và đạo hàm của hàm số lũy thừa, ta có:

f'(x) = d/dx (3x2) + d/dx (2x) - d/dx (1)

f'(x) = 3 * 2x + 2 - 0

f'(x) = 6x + 2

Mẹo giải bài tập đạo hàm hiệu quả

Để giải bài tập đạo hàm một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:

  • Nắm vững các công thức đạo hàm cơ bản: Học thuộc lòng các công thức đạo hàm của các hàm số cơ bản như hàm số lũy thừa, hàm số lượng giác, hàm số mũ, hàm số logarit.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để làm quen với các dạng bài và rèn luyện kỹ năng giải bài.
  • Sử dụng các công cụ hỗ trợ: Sử dụng máy tính bỏ túi hoặc các phần mềm tính đạo hàm để kiểm tra kết quả.
  • Tìm kiếm sự giúp đỡ: Nếu gặp khó khăn, hãy hỏi thầy cô giáo hoặc bạn bè để được giúp đỡ.

Tài liệu tham khảo hữu ích

Ngoài SGK Toán 12 tập 2 - Cánh diều, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách bài tập Toán 12: Cung cấp nhiều bài tập luyện tập khác nhau.
  • Các trang web học toán online: Cung cấp lời giải chi tiết và các bài giảng video.
  • Các diễn đàn học toán: Nơi bạn có thể trao đổi kiến thức và kinh nghiệm với những người khác.

Kết luận

Bài tập 5 trang 42 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài hiệu quả mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong quá trình học tập và đạt được kết quả tốt nhất.

Tài liệu, đề thi và đáp án Toán 12