Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 12 tập 1 của giaitoan.edu.vn. Chúng tôi xin giới thiệu lời giải chi tiết và dễ hiểu cho mục 2 trang 16, 17, 18 sách giáo khoa Toán 12 tập 1 - Cánh diều.
Với đội ngũ giáo viên giàu kinh nghiệm, chúng tôi cam kết cung cấp những lời giải chính xác, đầy đủ, giúp các em nắm vững kiến thức và tự tin giải quyết các bài tập tương tự.
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số bằng đạo hàm
Trả lời câu hỏi Luyện tập 3 trang 18 SGK Toán 12 Cánh diều
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = \sin 2x - 2x\) trên đoạn \(\left[ {\frac{\pi }{2};\frac{{3\pi }}{2}} \right]\).
Phương pháp giải:
B1: Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.
B2: Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( a \right),f\left( b \right)\)
B3: So sánh các giá trị tìm được ở bước 2 và kết luận
Lời giải chi tiết:
Ta có: \(f'\left( x \right) = 2\cos 2x - 2\).
Xét \(f'\left( x \right) = 0 \Leftrightarrow x = \pi \).
Ta có \(f\left( {\frac{\pi }{2}} \right) = - \pi ,f\left( \pi \right) = - 2\pi ,f\left( {\frac{{3\pi }}{2}} \right) = - 3\pi \)
Vậy hàm số \(f\left( x \right) = \sin 2x - 2x\) có giá trị nhỏ nhất bằng \( - 3\pi \) khi \(x = \frac{{3\pi }}{2}\) và có giá trị lớn nhất bằng \( - \pi \) khi \(x = \frac{\pi }{2}\) .
Trả lời câu hỏi Hoạt động 3 trang 17SGK Toán 12 Cánh diều
Cho hàm số \(y = f\left( x \right) = 2{x^3} - 6x,x \in \left[ { - 2;2} \right]\) có đồ thị là đường cong ở Hình 9.
a) Dựa vào đồ thị ở Hình 9, hãy cho biết các giá trị \(M = \mathop {\max }\limits_{\left[ { - 2;2} \right]} f\left( x \right);m = \mathop {\min }\limits_{\left[ { - 2;2} \right]} f\left( x \right)\) bằng bao nhiêu.
b) Giải phương trình \(f'\left( x \right) = 0\) với \(x \in \left( { - 2;2} \right)\)
c) Tính các giá trị của hàm số \(f\left( x \right)\) tại hai đầu mút \( - 2;2\) và tại các điểm \(x \in \left( { - 2;2} \right)\) mà ở đó \(f'\left( x \right) = 0\)
d) So sánh M (hoặc m) với số lớn nhất (hoặc số bé nhất) trong các giá trị tính được ở câu c
Lời giải chi tiết:
a) Ta có: \(\left\{ \begin{array}{l}\mathop {\max }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = 4\\\mathop {\min }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = - 4\end{array} \right.\).
b) Ta có: \(f'\left( x \right) = 6{x^2} - 6\).
Xét \(f'\left( x \right) = 0 \Leftrightarrow x = \pm 1\).
c) Ta có:\(\left\{ \begin{array}{l}f\left( 2 \right) = f\left( { - 1} \right) = 4\\f\left( { - 2} \right) = f\left( 1 \right) = - 4\end{array} \right.\).
d) Nhận xét: \(\left\{ \begin{array}{l}\mathop {\max }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = f\left( 2 \right) = f\left( { - 1} \right)\\\mathop {\min }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = f\left( { - 2} \right) = f\left( 1 \right)\end{array} \right.\).
Trả lời câu hỏi Luyện tập 2 trang 16 SGK Toán 12 Cánh diều
Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của hàm số \(y = \frac{{2x - 5}}{{x - 1}}\) trên nửa khoảng \((1;3]\).
Phương pháp giải:
B1: Tìm tập xác định của hàm số.
B2: Tính \(y'\). Tìm các điểm mà tại đó \(y' = 0\) hoặc \(y'\) không tồn tại.
B3: Lập bảng biến thiên của hàm số.
B4: Dựa vào bảng biến thiên để kết luận.
Lời giải chi tiết:
Ta có: \(y' = \frac{3}{{{{\left( {x - 1} \right)}^2}}}\).
Nhận xét \(y' > 0{\rm{ }}\forall x \in D\).
Ta có bảng biến thiên:
Vậy hàm số có giá trị lớn nhất bằng \(\frac{1}{2}\) khi \(x = 3\) và không có giá trị nhỏ nhất.
Trả lời câu hỏi Hoạt động 2 trang 16 SGK Toán 12 Cánh diều
Cho hàm số \(f\left( x \right) = x + \frac{1}{{x - 1}}\) với \(x > 1\).
a) Tính \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right),\mathop {\lim }\limits_{x \to + \infty } f\left( x \right)\).
b) Lập bảng biến thiên của hàm số \(f\left( x \right)\) trên khoảng \(\left( {1; + \infty } \right)\).
c) Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của hàm số \(f\left( x \right)\) trên khoảng \(\left( {1; + \infty } \right)\).
Phương pháp giải:
a) Ta có: \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = + \infty \\\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \end{array} \right.\)
b) Bảng biến thiên của hàm số trên khoảng \(\left( {1; + \infty } \right)\) là:
c) Hàm số có giá trị nhỏ nhất bằng 3 khi \(x = 2\) và không có giá trị lớn nhất.
Lời giải chi tiết:
a) Ta có: \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = + \infty \\\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \end{array} \right.\)
b) Bảng biến thiên của hàm số trên khoảng \(\left( {1; + \infty } \right)\) là:
c) Hàm số có giá trị nhỏ nhất bằng 3 khi \(x = 2\) và không có giá trị lớn nhất.
Trả lời câu hỏi Hoạt động 2 trang 16 SGK Toán 12 Cánh diều
Cho hàm số \(f\left( x \right) = x + \frac{1}{{x - 1}}\) với \(x > 1\).
a) Tính \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right),\mathop {\lim }\limits_{x \to + \infty } f\left( x \right)\).
b) Lập bảng biến thiên của hàm số \(f\left( x \right)\) trên khoảng \(\left( {1; + \infty } \right)\).
c) Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của hàm số \(f\left( x \right)\) trên khoảng \(\left( {1; + \infty } \right)\).
Phương pháp giải:
a) Ta có: \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = + \infty \\\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \end{array} \right.\)
b) Bảng biến thiên của hàm số trên khoảng \(\left( {1; + \infty } \right)\) là:
c) Hàm số có giá trị nhỏ nhất bằng 3 khi \(x = 2\) và không có giá trị lớn nhất.
Lời giải chi tiết:
a) Ta có: \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = + \infty \\\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \end{array} \right.\)
b) Bảng biến thiên của hàm số trên khoảng \(\left( {1; + \infty } \right)\) là:
c) Hàm số có giá trị nhỏ nhất bằng 3 khi \(x = 2\) và không có giá trị lớn nhất.
Trả lời câu hỏi Luyện tập 2 trang 16 SGK Toán 12 Cánh diều
Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của hàm số \(y = \frac{{2x - 5}}{{x - 1}}\) trên nửa khoảng \((1;3]\).
Phương pháp giải:
B1: Tìm tập xác định của hàm số.
B2: Tính \(y'\). Tìm các điểm mà tại đó \(y' = 0\) hoặc \(y'\) không tồn tại.
B3: Lập bảng biến thiên của hàm số.
B4: Dựa vào bảng biến thiên để kết luận.
Lời giải chi tiết:
Ta có: \(y' = \frac{3}{{{{\left( {x - 1} \right)}^2}}}\).
Nhận xét \(y' > 0{\rm{ }}\forall x \in D\).
Ta có bảng biến thiên:
Vậy hàm số có giá trị lớn nhất bằng \(\frac{1}{2}\) khi \(x = 3\) và không có giá trị nhỏ nhất.
Trả lời câu hỏi Hoạt động 3 trang 17SGK Toán 12 Cánh diều
Cho hàm số \(y = f\left( x \right) = 2{x^3} - 6x,x \in \left[ { - 2;2} \right]\) có đồ thị là đường cong ở Hình 9.
a) Dựa vào đồ thị ở Hình 9, hãy cho biết các giá trị \(M = \mathop {\max }\limits_{\left[ { - 2;2} \right]} f\left( x \right);m = \mathop {\min }\limits_{\left[ { - 2;2} \right]} f\left( x \right)\) bằng bao nhiêu.
b) Giải phương trình \(f'\left( x \right) = 0\) với \(x \in \left( { - 2;2} \right)\)
c) Tính các giá trị của hàm số \(f\left( x \right)\) tại hai đầu mút \( - 2;2\) và tại các điểm \(x \in \left( { - 2;2} \right)\) mà ở đó \(f'\left( x \right) = 0\)
d) So sánh M (hoặc m) với số lớn nhất (hoặc số bé nhất) trong các giá trị tính được ở câu c
Lời giải chi tiết:
a) Ta có: \(\left\{ \begin{array}{l}\mathop {\max }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = 4\\\mathop {\min }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = - 4\end{array} \right.\).
b) Ta có: \(f'\left( x \right) = 6{x^2} - 6\).
Xét \(f'\left( x \right) = 0 \Leftrightarrow x = \pm 1\).
c) Ta có:\(\left\{ \begin{array}{l}f\left( 2 \right) = f\left( { - 1} \right) = 4\\f\left( { - 2} \right) = f\left( 1 \right) = - 4\end{array} \right.\).
d) Nhận xét: \(\left\{ \begin{array}{l}\mathop {\max }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = f\left( 2 \right) = f\left( { - 1} \right)\\\mathop {\min }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = f\left( { - 2} \right) = f\left( 1 \right)\end{array} \right.\).
Trả lời câu hỏi Luyện tập 3 trang 18 SGK Toán 12 Cánh diều
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = \sin 2x - 2x\) trên đoạn \(\left[ {\frac{\pi }{2};\frac{{3\pi }}{2}} \right]\).
Phương pháp giải:
B1: Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.
B2: Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( a \right),f\left( b \right)\)
B3: So sánh các giá trị tìm được ở bước 2 và kết luận
Lời giải chi tiết:
Ta có: \(f'\left( x \right) = 2\cos 2x - 2\).
Xét \(f'\left( x \right) = 0 \Leftrightarrow x = \pi \).
Ta có \(f\left( {\frac{\pi }{2}} \right) = - \pi ,f\left( \pi \right) = - 2\pi ,f\left( {\frac{{3\pi }}{2}} \right) = - 3\pi \)
Vậy hàm số \(f\left( x \right) = \sin 2x - 2x\) có giá trị nhỏ nhất bằng \( - 3\pi \) khi \(x = \frac{{3\pi }}{2}\) và có giá trị lớn nhất bằng \( - \pi \) khi \(x = \frac{\pi }{2}\) .
Mục 2 trong SGK Toán 12 tập 1 - Cánh diều tập trung vào việc nghiên cứu về giới hạn của hàm số. Đây là một khái niệm nền tảng quan trọng trong chương trình Toán học, đặc biệt là trong việc học tập các kiến thức về đạo hàm và tích phân. Việc hiểu rõ về giới hạn hàm số sẽ giúp học sinh có thể giải quyết các bài toán phức tạp hơn một cách hiệu quả.
Mục 2 bao gồm các nội dung chính sau:
Bài 1 yêu cầu tính giới hạn của hàm số f(x) = (x^2 - 1) / (x - 1) khi x tiến tới 1. Để giải bài này, ta có thể phân tích tử số thành nhân tử và rút gọn biểu thức. Kết quả là giới hạn của f(x) khi x tiến tới 1 bằng 2.
Bài 2 yêu cầu tìm giới hạn của hàm số g(x) = (sqrt(x+1) - sqrt(x)) / x khi x tiến tới 0. Để giải bài này, ta có thể nhân cả tử và mẫu với liên hợp của tử số. Kết quả là giới hạn của g(x) khi x tiến tới 0 bằng 1/(2*sqrt(1)) = 1/2.
Bài 3 yêu cầu tính giới hạn của hàm số h(x) = (sin(x)) / x khi x tiến tới 0. Đây là một giới hạn lượng giác đặc biệt, có giá trị bằng 1. Học sinh cần nhớ giới hạn này để giải các bài toán tương tự.
Để giải các bài tập về giới hạn hàm số một cách hiệu quả, học sinh cần nắm vững các phương pháp sau:
Khi học về giới hạn hàm số, học sinh cần lưu ý những điều sau:
Hy vọng rằng với lời giải chi tiết và các phương pháp giải bài tập được trình bày ở trên, các em học sinh sẽ hiểu rõ hơn về Mục 2 trang 16, 17, 18 SGK Toán 12 tập 1 - Cánh diều và tự tin giải quyết các bài toán liên quan đến giới hạn hàm số. Chúc các em học tập tốt!