Logo Header
  1. Môn Toán
  2. Giải bài tập 6 trang 86 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 6 trang 86 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 6 trang 86 SGK Toán 12 tập 2 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 6 trang 86 SGK Toán 12 tập 2 theo chương trình Cánh diều, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, dễ hiểu và phù hợp với nhu cầu của học sinh, sinh viên.

Lập phương trình mặt cầu (S) trong mỗi trường hợp sau: a) (S) có tâm I(3; -7; 1) và bán kính \(R = 2\); b) (S) có tâm I(-1; 4; -5) và đi qua điểm M(3; 1; 2); c) (S) có đường kính là đoạn thẳng CD với C(1; -3; -1) và D(-3; 1; 2).

Đề bài

Lập phương trình mặt cầu (S) trong mỗi trường hợp sau:

a) (S) có tâm I(3; -7; 1) và bán kính \(R = 2\);

b) (S) có tâm I(-1; 4; -5) và đi qua điểm M(3; 1; 2);

c) (S) có đường kính là đoạn thẳng CD với C(1; -3; -1) và D(-3; 1; 2).

Phương pháp giải - Xem chi tiếtGiải bài tập 6 trang 86 SGK Toán 12 tập 2 - Cánh diều 1

Sử dụng kiến thức về phương trình mặt cầu để lập phương trình mặt cầu: Phương trình mặt cầu tâm \(I\left( {a;b;c} \right)\), bán kính R có là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).

Lời giải chi tiết

a) (S) có tâm I(3; -7; 1), bán kính \(R = 2\) có phương trình là \({\left( {x - 3} \right)^2} + {\left( {y + 7} \right)^2} + {\left( {z - 1} \right)^2} = 4\).

b) (S) có tâm I và bán kính \(IM = \sqrt {{{\left( {3 + 1} \right)}^2} + {{\left( {1 - 4} \right)}^2} + {{\left( {2 + 5} \right)}^2}} = \sqrt {74} \) nên phương trình mặt cầu (S) là: \({\left( {x + 1} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 5} \right)^2} = 74\).

c) Gọi I là trung điểm của CD nên \(I\left( { - 1; - 1;\frac{1}{2}} \right)\).

Vì mặt cầu (S) có đường kính là CD nên (S) có tâm \(I\left( { - 1; - 1;\frac{1}{2}} \right)\), bán kính \(R = IC = \sqrt {{{\left( {1 + 1} \right)}^2} + {{\left( { - 3 + 1} \right)}^2} + {{\left( { - 1 - \frac{1}{2}} \right)}^2}} = \frac{{\sqrt {41} }}{2}\).

Do đó, phương trình mặt cầu (S) là: \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - \frac{1}{2}} \right)^2} = \frac{{41}}{4}\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 6 trang 86 SGK Toán 12 tập 2 - Cánh diều đặc sắc thuộc chuyên mục toán lớp 12 trên nền tảng toán học. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 6 trang 86 SGK Toán 12 tập 2 - Cánh diều: Tổng quan

Bài tập 6 trang 86 SGK Toán 12 tập 2 - Cánh diều thuộc chương trình học về Đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững lý thuyết và kỹ năng giải bài tập là rất quan trọng để đạt kết quả tốt trong các kỳ thi.

Nội dung bài tập 6 trang 86 SGK Toán 12 tập 2 - Cánh diều

Bài tập 6 thường bao gồm các dạng bài sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn thức, đa thức, và các hàm số phức tạp hơn.
  • Áp dụng quy tắc tính đạo hàm: Sử dụng các quy tắc như quy tắc tích, quy tắc thương, quy tắc hàm hợp để tính đạo hàm.
  • Giải phương trình đạo hàm: Tìm nghiệm của phương trình đạo hàm để xác định các điểm cực trị, điểm uốn của hàm số.
  • Ứng dụng đạo hàm: Sử dụng đạo hàm để giải các bài toán về tối ưu hóa, tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.

Lời giải chi tiết bài tập 6 trang 86 SGK Toán 12 tập 2 - Cánh diều

Để giúp bạn hiểu rõ hơn về cách giải bài tập 6 trang 86 SGK Toán 12 tập 2 - Cánh diều, chúng tôi sẽ cung cấp lời giải chi tiết cho từng câu hỏi. Dưới đây là ví dụ về lời giải cho một số câu hỏi thường gặp:

Ví dụ 1: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1

Lời giải:

f'(x) = 3x2 + 4x - 5

Ví dụ 2: Tính đạo hàm của hàm số g(x) = sin(x) * cos(x)

Lời giải:

g'(x) = cos(x) * cos(x) + sin(x) * (-sin(x)) = cos2(x) - sin2(x)

Các bước giải bài tập đạo hàm hiệu quả

  1. Xác định đúng công thức đạo hàm: Nắm vững các công thức đạo hàm cơ bản và quy tắc tính đạo hàm.
  2. Phân tích hàm số: Xác định dạng hàm số và các thành phần của nó.
  3. Áp dụng quy tắc tính đạo hàm: Sử dụng các quy tắc phù hợp để tính đạo hàm.
  4. Rút gọn biểu thức: Rút gọn biểu thức đạo hàm để có kết quả cuối cùng.
  5. Kiểm tra lại kết quả: Kiểm tra lại kết quả để đảm bảo tính chính xác.

Mẹo học tốt môn Toán 12

Để học tốt môn Toán 12, bạn nên:

  • Học lý thuyết kỹ càng: Nắm vững các định nghĩa, định lý, và công thức.
  • Luyện tập thường xuyên: Giải nhiều bài tập để rèn luyện kỹ năng.
  • Tìm kiếm sự giúp đỡ: Hỏi thầy cô, bạn bè khi gặp khó khăn.
  • Sử dụng tài liệu tham khảo: Đọc thêm các sách tham khảo, tài liệu ôn thi.
  • Lập kế hoạch học tập: Lập kế hoạch học tập cụ thể và thực hiện nghiêm túc.

Tài liệu tham khảo hữu ích

Dưới đây là một số tài liệu tham khảo hữu ích cho việc học Toán 12:

  • Sách giáo khoa Toán 12 tập 1 và tập 2 - Cánh diều
  • Sách bài tập Toán 12 - Cánh diều
  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng Toán 12 trên YouTube

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài tập 6 trang 86 SGK Toán 12 tập 2 - Cánh diều một cách hiệu quả. Chúc bạn học tập tốt và đạt kết quả cao trong các kỳ thi!

Tài liệu, đề thi và đáp án Toán 12