Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 6 trang 86 SGK Toán 12 tập 2 theo chương trình Cánh diều, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, dễ hiểu và phù hợp với nhu cầu của học sinh, sinh viên.
Lập phương trình mặt cầu (S) trong mỗi trường hợp sau: a) (S) có tâm I(3; -7; 1) và bán kính \(R = 2\); b) (S) có tâm I(-1; 4; -5) và đi qua điểm M(3; 1; 2); c) (S) có đường kính là đoạn thẳng CD với C(1; -3; -1) và D(-3; 1; 2).
Đề bài
Lập phương trình mặt cầu (S) trong mỗi trường hợp sau:
a) (S) có tâm I(3; -7; 1) và bán kính \(R = 2\);
b) (S) có tâm I(-1; 4; -5) và đi qua điểm M(3; 1; 2);
c) (S) có đường kính là đoạn thẳng CD với C(1; -3; -1) và D(-3; 1; 2).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về phương trình mặt cầu để lập phương trình mặt cầu: Phương trình mặt cầu tâm \(I\left( {a;b;c} \right)\), bán kính R có là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).
Lời giải chi tiết
a) (S) có tâm I(3; -7; 1), bán kính \(R = 2\) có phương trình là \({\left( {x - 3} \right)^2} + {\left( {y + 7} \right)^2} + {\left( {z - 1} \right)^2} = 4\).
b) (S) có tâm I và bán kính \(IM = \sqrt {{{\left( {3 + 1} \right)}^2} + {{\left( {1 - 4} \right)}^2} + {{\left( {2 + 5} \right)}^2}} = \sqrt {74} \) nên phương trình mặt cầu (S) là: \({\left( {x + 1} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 5} \right)^2} = 74\).
c) Gọi I là trung điểm của CD nên \(I\left( { - 1; - 1;\frac{1}{2}} \right)\).
Vì mặt cầu (S) có đường kính là CD nên (S) có tâm \(I\left( { - 1; - 1;\frac{1}{2}} \right)\), bán kính \(R = IC = \sqrt {{{\left( {1 + 1} \right)}^2} + {{\left( { - 3 + 1} \right)}^2} + {{\left( { - 1 - \frac{1}{2}} \right)}^2}} = \frac{{\sqrt {41} }}{2}\).
Do đó, phương trình mặt cầu (S) là: \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - \frac{1}{2}} \right)^2} = \frac{{41}}{4}\).
Bài tập 6 trang 86 SGK Toán 12 tập 2 - Cánh diều thuộc chương trình học về Đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững lý thuyết và kỹ năng giải bài tập là rất quan trọng để đạt kết quả tốt trong các kỳ thi.
Bài tập 6 thường bao gồm các dạng bài sau:
Để giúp bạn hiểu rõ hơn về cách giải bài tập 6 trang 86 SGK Toán 12 tập 2 - Cánh diều, chúng tôi sẽ cung cấp lời giải chi tiết cho từng câu hỏi. Dưới đây là ví dụ về lời giải cho một số câu hỏi thường gặp:
Lời giải:
f'(x) = 3x2 + 4x - 5
Lời giải:
g'(x) = cos(x) * cos(x) + sin(x) * (-sin(x)) = cos2(x) - sin2(x)
Để học tốt môn Toán 12, bạn nên:
Dưới đây là một số tài liệu tham khảo hữu ích cho việc học Toán 12:
Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài tập 6 trang 86 SGK Toán 12 tập 2 - Cánh diều một cách hiệu quả. Chúc bạn học tập tốt và đạt kết quả cao trong các kỳ thi!