Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 12 tập 1 của giaitoan.edu.vn. Ở bài viết này, chúng tôi sẽ cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong mục 3, trang 76, 77 và 78 sách giáo khoa Toán 12 tập 1 - Cánh diều.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, rèn luyện kỹ năng giải toán và đạt kết quả tốt nhất trong môn học Toán.
Biểu thức tọa độ của tích vô hướng
Đề bài
Trả lời câu hỏi Hoạt động 3 trang 76 SGK Toán 12 Cánh diều
Trong không gian với hệ tọa độ Oxyz, cho các vecto \(\overrightarrow u = ({x_1};{y_1};{z_1})\) và \(\overrightarrow v = ({x_2};{y_2};{z_2})\). Hãy biểu diễn các vecto \(\overrightarrow u ,\overrightarrow v \) theo ba vecto đơn vị \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \) và tính tích vô hướng \(\overrightarrow u .\overrightarrow v \)
Phương pháp giải - Xem chi tiết
Áp dụng công thức tính tích vô hướng của 2 vecto: \(\overrightarrow a .\overrightarrow b = |\overrightarrow a |.|\overrightarrow b |.\cos (\overrightarrow a ,\overrightarrow b )\)
Lời giải chi tiết
\(\overrightarrow u = ({x_1};{y_1};{z_1}) = {x_1}\overrightarrow i + {y_1}\overrightarrow j + {z_1}\overrightarrow k \)
\(\overrightarrow v = ({x_2};{y_2};{z_2}) = {x_2}\overrightarrow i + {y_2}\overrightarrow j + {z_2}\overrightarrow k \)
Ta có: \({\overrightarrow i ^2} = \overrightarrow i .\overrightarrow i = |\overrightarrow i |.|\overrightarrow i |.\cos (\overrightarrow i ,\overrightarrow i ) = 1.1.\cos 0^\circ = 1\)
\({\overrightarrow j ^2} = \overrightarrow j .\overrightarrow j = |\overrightarrow j |.|\overrightarrow j |.\cos (\overrightarrow j ,\overrightarrow j ) = 1.1.\cos 0^\circ = 1\)
\({\overrightarrow k ^2} = \overrightarrow k .\overrightarrow k = |\overrightarrow k |.|\overrightarrow k |.\cos (\overrightarrow k ,\overrightarrow k ) = 1.1.\cos 0^\circ = 1\)
\(\overrightarrow i .\overrightarrow j = |\overrightarrow i |.|\overrightarrow j |.\cos (\overrightarrow i ,\overrightarrow j ) = 1.1.\cos 90^\circ = 0\)
\(\overrightarrow j .\overrightarrow k = |\overrightarrow j |.|\overrightarrow k |.\cos (\overrightarrow j ,\overrightarrow k ) = 1.1.\cos 90^\circ = 0\)
\(\overrightarrow i .\overrightarrow k = |\overrightarrow i |.|\overrightarrow k |.\cos (\overrightarrow i ,\overrightarrow k ) = 1.1.\cos 90^\circ = 0\)
Vậy: \(\overrightarrow u .\overrightarrow v = ({x_1}\overrightarrow i + {y_1}\overrightarrow j + {z_1}\overrightarrow k ).({x_2}\overrightarrow i + {y_2}\overrightarrow j + {z_2}\overrightarrow k )\)
\( = {x_1}{x_2}{\overrightarrow i ^2} + {x_1}{y_2}\overrightarrow i .\overrightarrow j + {x_1}{z_2}\overrightarrow i .\overrightarrow k + {y_1}{x_2}\overrightarrow i .\overrightarrow j + {y_1}{y_2}{\overrightarrow j ^2} + {y_1}{z_2}\overrightarrow j .\overrightarrow k + {z_1}{x_2}\overrightarrow i .\overrightarrow k + {z_1}{y_2}\overrightarrow j .\overrightarrow k + {z_1}{z_2}{\overrightarrow k ^2}\)
\( = {x_1}{x_2} + {y_1}{y_2} + {z_1}{z_2}\)
Mục 3 trong SGK Toán 12 tập 1 - Cánh diều tập trung vào việc nghiên cứu về đạo hàm của hàm số. Đây là một phần kiến thức nền tảng và quan trọng trong chương trình Toán học lớp 12, đóng vai trò then chốt trong việc giải quyết các bài toán liên quan đến cực trị, đơn điệu và ứng dụng của đạo hàm trong các lĩnh vực khác.
Mục 3 bao gồm các nội dung chính sau:
Dưới đây là lời giải chi tiết cho các bài tập trang 76:
Dưới đây là lời giải chi tiết cho các bài tập trang 77:
Dưới đây là lời giải chi tiết cho các bài tập trang 78:
Để giải bài tập về đạo hàm một cách hiệu quả, các em cần:
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Hy vọng rằng với lời giải chi tiết và những lưu ý trên, các em sẽ hiểu rõ hơn về nội dung mục 3 trang 76,77,78 SGK Toán 12 tập 1 - Cánh diều và có thể tự tin giải quyết các bài tập liên quan. Chúc các em học tập tốt!