Logo Header
  1. Môn Toán
  2. Giải bài tập 6 trang 27 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 6 trang 27 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 6 trang 27 SGK Toán 12 tập 2 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 6 trang 27 SGK Toán 12 tập 2 theo chương trình Cánh diều.

Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và giúp bạn nắm vững kiến thức Toán học.

Tính: a) (intlimits_0^1 {({x^6} - 4{x^3} + 3{x^2})dx} ) b) (intlimits_1^2 {frac{1}{{{x^4}}}dx} ) c) (intlimits_1^4 {frac{1}{{xsqrt x }}dx} ) d) (intlimits_0^{frac{pi }{2}} {(4sin x + 3cos x)dx} ) e) (intlimits_{frac{pi }{4}}^{frac{pi }{2}} {{{cot }^2}xdx} ) g) (intlimits_0^{frac{pi }{4}} {{{tan }^2}xdx} ) h) (intlimits_{ - 1}^0 {{e^{ - x}}dx} ) i) (intlimits_{ - 2}^{ - 1} {{e^{x + 2}}dx} ) k) (intlimits_0^1 {({{3.4}^x} - 5{e^{ - x}})dx}

Đề bài

Tính:

a) \(\int\limits_0^1 {({x^6} - 4{x^3} + 3{x^2})dx} \)

b) \(\int\limits_1^2 {\frac{1}{{{x^4}}}dx} \)

c) \(\int\limits_1^4 {\frac{1}{{x\sqrt x }}dx} \)

d) \(\int\limits_0^{\frac{\pi }{2}} {(4\sin x + 3\cos x)dx} \)

e) \(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {{{\cot }^2}xdx} \)

g) \(\int\limits_0^{\frac{\pi }{4}} {{{\tan }^2}xdx} \)

h) \(\int\limits_{ - 1}^0 {{e^{ - x}}dx} \)

i) \(\int\limits_{ - 2}^{ - 1} {{e^{x + 2}}dx} \)

k) \(\int\limits_0^1 {({{3.4}^x} - 5{e^{ - x}})dx} \)

Phương pháp giải - Xem chi tiếtGiải bài tập 6 trang 27 SGK Toán 12 tập 2 - Cánh diều 1

Cho hàm số f(x) liên tục trên đoạn [a;b]. Giả sử F(x) là nguyên hàm của f(x) trên đoạn [a;b]. Hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu là \(\int\limits_a^b {f(x)} dx\)

Lời giải chi tiết

a) \(\int\limits_0^1 {({x^6} - 4{x^3} + 3{x^2})dx} = \left. {\left( {\frac{{{x^7}}}{7} - {x^4} + {x^3}} \right)} \right|_0^1 = \frac{1}{7}\)

b) \(\int\limits_1^2 {\frac{1}{{{x^4}}}dx} = \left. {\left( { - \frac{1}{{3{x^3}}}} \right)} \right|_1^2 = \frac{7}{{24}}\)

c) \(\int\limits_1^4 {\frac{1}{{x\sqrt x }}dx} = \left. {\frac{{ - 2}}{{\sqrt x }}} \right|_1^4 = 1\)

d) \(\int\limits_0^{\frac{\pi }{2}} {(4\sin x + 3\cos x)dx} = \left. {\left( { - 4\cos x + 3\sin x} \right)} \right|_0^{\frac{\pi }{2}} = 7\)

e) \(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {{{\cot }^2}xdx} = \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\left( {\frac{1}{{{{\sin }^2}x}} - 1} \right)dx} = \left. {\left( { - \cot x - x} \right)} \right|_{\frac{\pi }{4}}^{\frac{\pi }{2}} = - \frac{\pi }{2} - ( - 1 - \frac{\pi }{4}) = 1 - \frac{\pi }{4}\)

g) \(\int\limits_0^{\frac{\pi }{4}} {{{\tan }^2}xdx} = \int\limits_0^{\frac{\pi }{4}} {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx} = \left. {\left( {\tan x - x} \right)} \right|_0^{\frac{\pi }{4}} = 1 - \frac{\pi }{4}\)

h) \(\int\limits_{ - 1}^0 {{e^{ - x}}dx} = - \left. {{e^{ - x}}} \right|_{ - 1}^0 = e - 1\)

i) \(\int\limits_{ - 2}^{ - 1} {{e^{x + 2}}dx} = \left. {{e^{x + 2}}} \right|_{ - 2}^{ - 1} = e - 1\)

k) \(\int\limits_0^1 {({{3.4}^x} - 5{e^{ - x}})dx} = \left. {\left( {3.\frac{{{4^x}}}{{\ln 4}} + 5{e^{ - x}}} \right)} \right|_0^1 = \frac{9}{{\ln 4}} + \frac{5}{e} - 5\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 6 trang 27 SGK Toán 12 tập 2 - Cánh diều đặc sắc thuộc chuyên mục toán lớp 12 trên nền tảng môn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 6 trang 27 SGK Toán 12 tập 2 - Cánh diều: Tổng quan

Bài tập 6 trang 27 SGK Toán 12 tập 2 thuộc chương trình Cánh diều, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của đại lượng. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập 6 trang 27 SGK Toán 12 tập 2 - Cánh diều

Bài tập 6 thường bao gồm các dạng bài sau:

  • Dạng 1: Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước, có thể là hàm số đơn giản hoặc hàm số phức tạp.
  • Dạng 2: Tìm cực trị của hàm số: Yêu cầu tìm điểm cực đại, cực tiểu của hàm số bằng cách giải phương trình đạo hàm bằng 0 và xét dấu đạo hàm.
  • Dạng 3: Khảo sát hàm số: Yêu cầu khảo sát sự biến thiên của hàm số, bao gồm khoảng đồng biến, nghịch biến, cực trị, giới hạn và đồ thị.
  • Dạng 4: Ứng dụng đạo hàm để giải quyết bài toán thực tế: Yêu cầu sử dụng đạo hàm để giải quyết các bài toán liên quan đến tốc độ thay đổi, tối ưu hóa, hoặc các bài toán vật lý, kinh tế.

Hướng dẫn giải chi tiết bài tập 6 trang 27 SGK Toán 12 tập 2 - Cánh diều

Để giải quyết bài tập 6 trang 27 SGK Toán 12 tập 2 một cách hiệu quả, bạn cần thực hiện các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho và các đại lượng cần tìm.
  2. Xác định hàm số: Nếu bài toán cho một tình huống thực tế, bạn cần xây dựng hàm số mô tả mối quan hệ giữa các đại lượng.
  3. Tính đạo hàm: Sử dụng các quy tắc tính đạo hàm để tìm đạo hàm của hàm số.
  4. Giải phương trình đạo hàm: Giải phương trình đạo hàm bằng 0 để tìm các điểm cực trị.
  5. Xét dấu đạo hàm: Xét dấu đạo hàm trên các khoảng xác định để xác định khoảng đồng biến, nghịch biến của hàm số.
  6. Kết luận: Viết kết luận về cực trị, khoảng đồng biến, nghịch biến của hàm số.

Ví dụ minh họa giải bài tập 6 trang 27 SGK Toán 12 tập 2 - Cánh diều

Ví dụ: Cho hàm số y = x3 - 3x2 + 2. Tìm cực đại, cực tiểu của hàm số.

Giải:

  1. Tính đạo hàm: y' = 3x2 - 6x
  2. Giải phương trình đạo hàm: 3x2 - 6x = 0 => x = 0 hoặc x = 2
  3. Xét dấu đạo hàm:
    • Với x < 0: y' > 0 => Hàm số đồng biến
    • Với 0 < x < 2: y' < 0 => Hàm số nghịch biến
    • Với x > 2: y' > 0 => Hàm số đồng biến
  4. Kết luận: Hàm số đạt cực đại tại x = 0, y = 2 và đạt cực tiểu tại x = 2, y = -2

Lưu ý khi giải bài tập 6 trang 27 SGK Toán 12 tập 2 - Cánh diều

Để đạt kết quả tốt nhất khi giải bài tập 6 trang 27 SGK Toán 12 tập 2, bạn cần:

  • Nắm vững các khái niệm và quy tắc về đạo hàm.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán để kiểm tra lại kết quả.

Tài liệu tham khảo

Ngoài SGK Toán 12 tập 2 - Cánh diều, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách bài tập Toán 12
  • Các trang web học toán online uy tín
  • Các video hướng dẫn giải bài tập Toán 12 trên YouTube

Kết luận

Bài tập 6 trang 27 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 12