Logo Header
  1. Môn Toán
  2. Giải bài tập 10 trang 43 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 10 trang 43 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 10 trang 43 SGK Toán 12 tập 2 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 2 - Cánh diều. Bài tập 10 trang 43 là một phần quan trọng trong chương trình học, đòi hỏi học sinh phải nắm vững kiến thức về các khái niệm và kỹ năng đã được học.

Chúng tôi hiểu rằng việc tự giải bài tập có thể gặp nhiều khó khăn, vì vậy chúng tôi đã biên soạn lời giải chi tiết, dễ hiểu, giúp bạn hiểu rõ bản chất của bài toán và áp dụng vào các bài tập tương tự.

Một chiếc xe ô tô chạy thử nghiệm trên một đường thẳng bắt đầu từ trạng thái đứng yên. Tốc độ của chiếc xe ô tô đó (tính bằng mét/giây) lần lượt ở giây thứ 10, thứ 20, thứ 30, thứ 40, thứ 50 và thứ 60 được ghi lại trong Bảng 1 a) Hãy xây dựng hàm số bậc ba (y = f(x) = a{x^3} + b{x^2} + cx + d(a ne 0)) để biểu diễn các số liệu ở Bảng 1, tức là ở hệ trục tọa độ Oxy, đồ thị của hàm số đó trên nửa khoảng ([0; + infty )) “gần” với các điểm O(0;0), B(10;5), C(20;21), D(30;40), E(40;62), G(50

Đề bài

Một chiếc xe ô tô chạy thử nghiệm trên một đường thẳng bắt đầu từ trạng thái đứng yên. Tốc độ của chiếc xe ô tô đó (tính bằng mét/giây) lần lượt ở giây thứ 10, thứ 20, thứ 30, thứ 40, thứ 50 và thứ 60 được ghi lại trong Bảng 1.

Giải bài tập 10 trang 43 SGK Toán 12 tập 2 - Cánh diều 1

a) Hãy xây dựng hàm số bậc ba \(y = f(x) = a{x^3} + b{x^2} + cx + d(a \ne 0)\) để biểu diễn các số liệu ở Bảng 1, tức là ở hệ trục tọa độ Oxy, đồ thị của hàm số đó trên nửa khoảng \([0; + \infty )\) “gần” với các điểm O(0;0), B(10;5), C(20;21), D(30;40), E(40;62), G(50;78), K(60;83).

b) Hãy tính (gần đúng) quãng đường mà xe ô tô đó đã đi được tính đến giây thứ 60 của quá trình thử nghiệm.

Phương pháp giải - Xem chi tiếtGiải bài tập 10 trang 43 SGK Toán 12 tập 2 - Cánh diều 2

a) Thay các giá trị vào hàm số và giải hệ phương trình.

b) Tính quãng đường thông qua tích phân của vận tốc.

Lời giải chi tiết

a) \(v(t) = a{t^3} + b{t^2} + ct + d(a \ne 0)\) với t là thời gian (giây).

Ta có:

\(\left\{ \begin{array}{l}v(0) = d = 0\\v(10) = 1000a + 100b + 10c + d = 5\\v(20) = 8000a + 400b + 20c + d = 21\\v(30) = 27000a + 900b + 30c + d = 40\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}d = 0\\a = - \frac{1}{{750}}\\b = \frac{{19}}{{200}}\\c = - \frac{{19}}{{60}}\end{array} \right.\).

Vậy \(v(t) = - \frac{1}{{750}}{t^3} + \frac{{19}}{{200}}{t^2} - \frac{{19}}{{60}}t\).

b) Quãng đường mà xe ô tô đó đã đi được tính đến giây thứ 60 của quá trình thử nghiệm là:

\(\int\limits_0^{60} {v(t)} dt = \int\limits_0^{60} {\left( { - \frac{1}{{750}}{t^3} + \frac{{19}}{{200}}{t^2} - \frac{{19}}{{60}}t} \right)dt} = \left. {\left( { - \frac{1}{{3000}}{t^4} + \frac{{19}}{{600}}{t^3} - \frac{{19}}{{120}}{t^2}} \right)_0^{60}} \right| = 1950m\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 10 trang 43 SGK Toán 12 tập 2 - Cánh diều đặc sắc thuộc chuyên mục bài tập toán 12 trên nền tảng môn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 10 trang 43 SGK Toán 12 tập 2 - Cánh diều: Tổng quan và Phương pháp giải

Bài tập 10 trang 43 SGK Toán 12 tập 2 - Cánh diều thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, đạo hàm của tổng, hiệu, tích, thương của các hàm số, và đạo hàm của hàm hợp để giải quyết các bài toán cụ thể.

Nội dung bài tập 10 trang 43 SGK Toán 12 tập 2 - Cánh diều

Bài tập 10 thường bao gồm các dạng bài sau:

  • Tính đạo hàm của hàm số tại một điểm cho trước.
  • Tìm đạo hàm của hàm số.
  • Xác định các điểm mà tại đó hàm số không có đạo hàm.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến của đồ thị hàm số.

Phương pháp giải bài tập 10 trang 43 SGK Toán 12 tập 2 - Cánh diều

Để giải quyết bài tập 10 trang 43 một cách hiệu quả, bạn cần nắm vững các kiến thức và kỹ năng sau:

  1. Nắm vững các công thức đạo hàm cơ bản: Đạo hàm của hàm số lũy thừa, hàm số lượng giác, hàm số mũ, hàm số logarit.
  2. Vận dụng các quy tắc đạo hàm: Quy tắc đạo hàm của tổng, hiệu, tích, thương của các hàm số, quy tắc đạo hàm của hàm hợp.
  3. Phân tích bài toán: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho, và các kiến thức cần sử dụng.
  4. Thực hiện các phép tính đạo hàm một cách chính xác: Tránh các lỗi sai trong quá trình tính toán.
  5. Kiểm tra lại kết quả: Đảm bảo rằng kết quả của bạn là hợp lý và phù hợp với yêu cầu của bài toán.

Ví dụ minh họa giải bài tập 10 trang 43 SGK Toán 12 tập 2 - Cánh diều

Bài toán: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Lời giải:

f'(x) = 3x2 + 4x - 5

Các dạng bài tập nâng cao liên quan đến bài tập 10 trang 43

Ngoài các bài tập cơ bản, bạn cũng có thể gặp các bài tập nâng cao hơn, yêu cầu bạn vận dụng đạo hàm để giải quyết các bài toán phức tạp hơn, chẳng hạn như:

  • Tìm cực trị của hàm số.
  • Khảo sát sự biến thiên của hàm số.
  • Giải các bài toán tối ưu hóa.

Lưu ý khi giải bài tập 10 trang 43 SGK Toán 12 tập 2 - Cánh diều

Để đạt được kết quả tốt nhất, bạn nên:

  • Học thuộc các công thức đạo hàm cơ bản.
  • Luyện tập thường xuyên để nắm vững các quy tắc đạo hàm.
  • Đọc kỹ đề bài và phân tích bài toán một cách cẩn thận.
  • Kiểm tra lại kết quả của mình trước khi nộp bài.

Tài liệu tham khảo hữu ích

Ngoài SGK Toán 12 tập 2 - Cánh diều, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách bài tập Toán 12.
  • Các trang web học toán online uy tín.
  • Các video hướng dẫn giải bài tập Toán 12 trên YouTube.

Kết luận

Bài tập 10 trang 43 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng, giúp bạn củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải toán. Hy vọng rằng với những hướng dẫn và ví dụ minh họa trên, bạn sẽ tự tin giải quyết bài tập này một cách hiệu quả.

Tài liệu, đề thi và đáp án Toán 12