Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 1 - Cánh diều. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài tập 3 trang 88, từ đó nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tiết kiệm thời gian và đạt kết quả tốt nhất.
Bảng 10 biểu diễn mẫu số liệu ghép nhóm về độ tuổi của cư dân trong một khu phố. a) Tính khoảng biến thiên của mẫu số liệu ghép nhóm đó b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm đó
Đề bài
Bảng 10 biểu diễn mẫu số liệu ghép nhóm về độ tuổi của cư dân trong một khu phố.
a) Tính khoảng biến thiên của mẫu số liệu ghép nhóm đó.
b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm đó.
Phương pháp giải - Xem chi tiết
a) Khoảng biến thiên là hiệu của đầu mút phải nhóm cuối cùng và đầu mút trái nhóm đầu tiên.
b) Khoảng tứ phân vị là \({Q_3} - {Q_1}\).
Lời giải chi tiết
a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \(R = 80 - 20 = 60\).
b) Số phần tử của mẫu là n = 100.
Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 25\), \(c{f_2} = 45\), \(c{f_3} = 65\), \(c{f_4} = 80\), \(c{f_5} = 94\), \(c{f_6} = 100\).
Ta có: \(\frac{n}{4} = \frac{{100}}{4} = 25\) suy ra nhóm 1 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bẳng 25. Xét nhóm 1 là nhóm [20;30] có s = 20, h = 10, \({n_1} = 25\).
Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{25 - c{f_0}}}{{{n_1}}}} \right).h = 25 + \left( {\frac{{25 - 0}}{{25}}} \right).10 = 30\).
Ta có: \(\frac{{3n}}{4} = \frac{{3.100}}{4} = 75\) mà 65 < 75 < 80 suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bẳng 80. Xét nhóm 4 là nhóm [50;60] có t = 50, l = 10, \({n_4} = 15\) và nhóm 3 là nhóm [40;50] có \(c{f_3} = 65\).
Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{45 - c{f_3}}}{{{n_4}}}} \right).l = 50 + \left( {\frac{{75 - 65}}{{15}}} \right).10 = \frac{{170}}{3}\).
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = \frac{{170}}{3} - 30 = \frac{{80}}{3}\).
Bài tập 3 trang 88 SGK Toán 12 tập 1 - Cánh diều thuộc chương trình học về giới hạn của hàm số. Đây là một phần kiến thức quan trọng, nền tảng cho các chương trình học toán cao hơn. Bài tập này yêu cầu học sinh vận dụng các định nghĩa và tính chất của giới hạn để giải quyết các bài toán cụ thể.
Bài tập 3 bao gồm các câu hỏi liên quan đến việc tính giới hạn của hàm số tại một điểm. Các dạng bài tập thường gặp bao gồm:
Để giải quyết bài tập 3 trang 88 SGK Toán 12 tập 1 - Cánh diều một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Đề bài: Tính limx→2 (x2 - 4) / (x - 2)
Lời giải:
Ta có:
limx→2 (x2 - 4) / (x - 2) = limx→2 (x - 2)(x + 2) / (x - 2) = limx→2 (x + 2) = 2 + 2 = 4
Đề bài: Tính limx→-1 (x3 + 1) / (x + 1)
Lời giải:
Ta có:
limx→-1 (x3 + 1) / (x + 1) = limx→-1 (x + 1)(x2 - x + 1) / (x + 1) = limx→-1 (x2 - x + 1) = (-1)2 - (-1) + 1 = 1 + 1 + 1 = 3
Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:
Bài tập 3 trang 88 SGK Toán 12 tập 1 - Cánh diều là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính giới hạn của hàm số. Hy vọng với hướng dẫn chi tiết và các lưu ý trên, bạn sẽ tự tin hơn trong việc giải quyết các bài toán tương tự.