Logo Header
  1. Môn Toán
  2. Giải bài tập 7 trang 63 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 7 trang 63 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 7 trang 63 SGK Toán 12 tập 2 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 2 - Cánh diều. Bài tập 7 trang 63 thuộc chương trình học Toán 12, tập trung vào các kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Chúng tôi hiểu rằng việc giải các bài tập Toán 12 có thể gặp nhiều khó khăn. Vì vậy, đội ngũ gia sư giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.

Lập phương trình mặt phẳng theo đoạn chắn của mặt phẳng (P), biết (P) đi qua ba điểm A(5;0;0), B(0;3;0), C(0;0;6)

Đề bài

Lập phương trình mặt phẳng theo đoạn chắn của mặt phẳng (P), biết (P) đi qua ba điểm A(5;0;0), B(0;3;0), C(0;0;6)

Phương pháp giải - Xem chi tiếtGiải bài tập 7 trang 63 SGK Toán 12 tập 2 - Cánh diều 1

Mặt phẳng đi qua ba điểm A(a;0;0), B(0;b;0), C(0;0;c) với abc \( \ne \) 0 có phương trình đoạn chắn là: \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\)

Lời giải chi tiết

Phương trình đoạn chắn của mặt phẳng (P) là: \(\frac{x}{5} + \frac{y}{3} + \frac{z}{6} = 1\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 7 trang 63 SGK Toán 12 tập 2 - Cánh diều đặc sắc thuộc chuyên mục toán lớp 12 trên nền tảng môn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 7 trang 63 SGK Toán 12 tập 2 - Cánh diều: Tổng quan và Phương pháp giải

Bài tập 7 trang 63 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng trong chương trình học về đạo hàm và ứng dụng của đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để khảo sát hàm số, tìm cực trị, và vẽ đồ thị hàm số. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và định lý liên quan đến đạo hàm, đồng thời rèn luyện kỹ năng giải toán và tư duy logic.

Nội dung bài tập 7 trang 63 SGK Toán 12 tập 2 - Cánh diều

Bài tập 7 thường bao gồm các yêu cầu sau:

  • Tính đạo hàm của hàm số.
  • Tìm các điểm cực trị của hàm số.
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Vẽ đồ thị hàm số.

Phương pháp giải bài tập 7 trang 63 SGK Toán 12 tập 2 - Cánh diều

  1. Bước 1: Tính đạo hàm cấp một (y') của hàm số. Sử dụng các quy tắc tính đạo hàm đã học để tìm y'.
  2. Bước 2: Tìm các điểm cực trị của hàm số. Giải phương trình y' = 0 để tìm các giá trị x mà tại đó đạo hàm bằng 0. Các giá trị x này là các điểm cực trị của hàm số.
  3. Bước 3: Xác định khoảng đồng biến, nghịch biến của hàm số. Xét dấu đạo hàm y' trên các khoảng xác định của hàm số. Nếu y' > 0 trên một khoảng, hàm số đồng biến trên khoảng đó. Nếu y' < 0 trên một khoảng, hàm số nghịch biến trên khoảng đó.
  4. Bước 4: Vẽ đồ thị hàm số. Dựa vào các thông tin đã tìm được (điểm cực trị, khoảng đồng biến, nghịch biến, giới hạn tại vô cùng,...) để vẽ đồ thị hàm số.

Ví dụ minh họa giải bài tập 7 trang 63 SGK Toán 12 tập 2 - Cánh diều

Bài toán: Cho hàm số y = x3 - 3x2 + 2. Hãy khảo sát hàm số và vẽ đồ thị.

Lời giải:

  1. Tính đạo hàm: y' = 3x2 - 6x
  2. Tìm điểm cực trị: Giải phương trình 3x2 - 6x = 0, ta được x = 0 và x = 2. Vậy hàm số có hai điểm cực trị là x = 0 và x = 2.
  3. Xác định khoảng đồng biến, nghịch biến:
    • Trên khoảng (-∞; 0), y' > 0, hàm số đồng biến.
    • Trên khoảng (0; 2), y' < 0, hàm số nghịch biến.
    • Trên khoảng (2; +∞), y' > 0, hàm số đồng biến.
  4. Vẽ đồ thị: Dựa vào các thông tin trên, ta có thể vẽ được đồ thị hàm số y = x3 - 3x2 + 2.

Lưu ý khi giải bài tập 7 trang 63 SGK Toán 12 tập 2 - Cánh diều

  • Nắm vững các quy tắc tính đạo hàm.
  • Chú ý xét dấu đạo hàm để xác định khoảng đồng biến, nghịch biến.
  • Sử dụng các công cụ hỗ trợ như máy tính cầm tay hoặc phần mềm vẽ đồ thị để kiểm tra kết quả.
  • Luyện tập thường xuyên để rèn luyện kỹ năng giải toán.

Tài liệu tham khảo hữu ích

Ngoài SGK Toán 12 tập 2 - Cánh diều, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách bài tập Toán 12.
  • Các trang web học toán online uy tín như giaitoan.edu.vn.
  • Các video bài giảng về đạo hàm và ứng dụng của đạo hàm.

Hy vọng với những hướng dẫn chi tiết trên, bạn sẽ tự tin giải bài tập 7 trang 63 SGK Toán 12 tập 2 - Cánh diều một cách hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 12