Logo Header
  1. Môn Toán
  2. Giải bài tập 8 trang 47 SGK Toán 12 tập 1 - Cánh diều

Giải bài tập 8 trang 47 SGK Toán 12 tập 1 - Cánh diều

Giải bài tập 8 trang 47 SGK Toán 12 tập 1 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 1 - Cánh diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải quyết bài tập 8 trang 47 một cách hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn tự tin hơn trong quá trình ôn tập và làm bài.

Tìm giá trị nhỏ nhất và giá trị lớn nhất của mỗi hàm số sau: a) (fleft( x right) = 2{x^3} - 6x) trên đoạn (left[ { - 1;3} right]); b) (fleft( x right) = frac{{{x^2} + 3x + 6}}{{x + 2}}) trên đoạn (left[ {1;5} right]); c) (fleft( x right) = frac{{Inleft( {x + 1} right)}}{{x + 1}}) trên đoạn (left[ {0;3} right]); d) (fleft( x right) = 2sin3x + 7x + 1) trên đoạn (left[ {frac{{ - pi }}{2};frac{pi }{2}} right])

Đề bài

Tìm giá trị nhỏ nhất và giá trị lớn nhất của mỗi hàm số sau:

a) \(f\left( x \right) = 2{x^3} - 6x\) trên đoạn \(\left[ { - 1;3} \right]\);

b) \(f\left( x \right) = \frac{{{x^2} + 3x + 6}}{{x + 2}}\) trên đoạn \(\left[ {1;5} \right]\);

c) \(f\left( x \right) = \frac{{In\left( {x + 1} \right)}}{{x + 1}}\) trên đoạn \(\left[ {0;3} \right]\);

d) \(f\left( x \right) = 2sin3x + 7x + 1\) trên đoạn \(\left[ {\frac{{ - \pi }}{2};\frac{\pi }{2}} \right]\)

Phương pháp giải - Xem chi tiếtGiải bài tập 8 trang 47 SGK Toán 12 tập 1 - Cánh diều 1

Xét phương trình với số trong ngoặc.

So sánh và đưa ra kết quả.

Lời giải chi tiết

a) \(f\left( x \right) = 2{x^3} - 6x\) trên đoạn \(\left[ { - 1;3} \right]\)

Tìm điểm cực trị: \(f'\left( x \right) = 0 \to 6{x^2} - 6 = 0 \to x = - 1, x = 1\)

So sánh giá trị hàm số tại các điểm cực trị và hai đầu mút của đoạn:

\(f\left( { - 1} \right) = 2{( - 1)^3} - 6\left( { - 1} \right) = - 2 + 6 = 4\)

\(f\left( 1 \right) = 2{(1)^3} - 6\left( 1 \right) = 2 - 6 = - 4\)

\(f\left( 3 \right) = 2{(3)^3} - 6\left( 3 \right) = 54 - 18 = 36\)

Vậy GTNN của hàm số trên đoạn \(\left[ { - 1;3} \right]\) là \( - 4\) (tại \(x = 1\)), và GTLN là 36 (tại \(x = 3\))

b) \(f\left( x \right) = \frac{{{x^2} + 3x + 6}}{{x + 2}}\) trên đoạn \(\left[ {1;5} \right]\)

\(f'(x) = \frac{{{x^2} + 4x}}{{{{(x + 2)}^2}}} = 0 \Leftrightarrow x = 0\). Khi đó trên đoạn [1;5] không tồn tại x để f’(x) = 0.

So sánh giá trị hàm số tại hai đầu mút của đoạn:

\(f\left( 1 \right) = \frac{{{1^2} + 3.1 + 6}}{{1 + 2}} = \frac{{10}}{3};f\left( 5 \right) = \frac{{{5^2} + 3.5 + 6}}{{5 + 2}} = \frac{{46}}{7}\)

Vậy GTNN của hàm số trên đoạn \(\left[ {1;5} \right]\) là \(\frac{{10}}{3}\) (tại \(x = 1\)), và GTLN là \(\frac{{46}}{7}\) (tại \(x = 5\))

c) \(f\left( x \right) = \frac{{In\left( {x + 1} \right)}}{{x + 1}}\) trên đoạn \(\left[ {0;3} \right]\)

So sánh giá trị hàm số:

\(f\left( 0 \right) = \frac{{\ln \left( {0 + 1} \right)}}{{0 + 1}} = 0; f(e - 1) = \frac{1}{{e + 1}}; f\left( 3 \right) = \frac{{\ln \left( {3 + 1} \right)}}{{3 + 1}} = \frac{{\ln \left( 2 \right)}}{2}\)

Vậy GTNN của hàm số trên đoạn \(\left[ {0;3} \right]\) là 0 (tại \(x = 0\)), và GTLN là \(\frac{{\ln \left( 2 \right)}}{2}\) (tại \(x = 3\))

d) \(f\left( x \right) = 2sin3x + 7x + 1\) trên đoạn \(\left[ {\frac{{ - \pi }}{2};\frac{\pi }{2}} \right]\)

\(f'(x) = 6\cos 3x + 7\). Khi đó trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) ta có f’(x) > 0, hàm số đồng biến

So sánh giá trị hàm số tại hai đầu mút của đoạn:

\(f\left( { - \frac{\pi }{2}} \right) = 2\sin \left( {3\left( { - \frac{\pi }{2}} \right)} \right) + 7\left( { - \frac{\pi }{2}} \right) + 1 = 3 - \frac{{7\pi }}{2}\)

\(f\left( {\frac{\pi }{2}} \right) = 2\sin \left( {3\left( {\frac{\pi }{2}} \right)} \right) + 7\left( {\frac{\pi }{2}} \right) + 1 = - 1 + \frac{{7\pi }}{2}\)

Vậy GTNN của hàm số trên đoạn \(\left[ {\frac{{ - \pi }}{2};\frac{\pi }{2}} \right]\) là \(3 - \frac{{7\pi }}{2}\) (tại \(x = \frac{{ - \pi }}{2}\)), và GTLN là \( - 1 + \frac{{7\pi }}{2}\) (tại \(x = \frac{\pi }{2}\))

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 8 trang 47 SGK Toán 12 tập 1 - Cánh diều đặc sắc thuộc chuyên mục bài tập toán 12 trên nền tảng môn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 8 trang 47 SGK Toán 12 tập 1 - Cánh diều: Tổng quan

Bài tập 8 trang 47 SGK Toán 12 tập 1 - Cánh diều thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn một bên, giới hạn tại vô cùng để giải quyết các bài toán cụ thể. Việc nắm vững các định nghĩa, tính chất và các phương pháp tính giới hạn là yếu tố then chốt để hoàn thành tốt bài tập này.

Nội dung bài tập 8 trang 47 SGK Toán 12 tập 1 - Cánh diều

Bài tập 8 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh tính giới hạn của các hàm số khi x tiến tới một giá trị cụ thể hoặc khi x tiến tới vô cùng. Các hàm số có thể là hàm đa thức, hàm hữu tỉ, hoặc các hàm số phức tạp hơn. Để giải quyết bài tập này, học sinh cần:

  • Xác định đúng loại giới hạn cần tính (giới hạn một bên, giới hạn tại vô cùng).
  • Áp dụng các định nghĩa và tính chất của giới hạn.
  • Sử dụng các phương pháp tính giới hạn phù hợp (ví dụ: chia cả tử và mẫu cho x, sử dụng công thức giới hạn đặc biệt).

Lời giải chi tiết bài tập 8 trang 47 SGK Toán 12 tập 1 - Cánh diều

Dưới đây là lời giải chi tiết cho từng câu hỏi của bài tập 8:

Câu a)

Để tính limx→2 (x2 - 4) / (x - 2), ta có thể phân tích tử số thành nhân tử:

(x2 - 4) = (x - 2)(x + 2)

Do đó:

limx→2 (x2 - 4) / (x - 2) = limx→2 (x - 2)(x + 2) / (x - 2) = limx→2 (x + 2) = 4

Câu b)

Để tính limx→-1 (x3 + 1) / (x + 1), ta có thể phân tích tử số thành nhân tử:

(x3 + 1) = (x + 1)(x2 - x + 1)

Do đó:

limx→-1 (x3 + 1) / (x + 1) = limx→-1 (x + 1)(x2 - x + 1) / (x + 1) = limx→-1 (x2 - x + 1) = 3

Câu c)

Để tính limx→∞ (2x2 + 1) / (x2 + 1), ta chia cả tử và mẫu cho x2:

limx→∞ (2x2 + 1) / (x2 + 1) = limx→∞ (2 + 1/x2) / (1 + 1/x2) = 2/1 = 2

Các phương pháp tính giới hạn thường dùng

Ngoài các phương pháp đã sử dụng trong lời giải trên, học sinh có thể tham khảo thêm các phương pháp tính giới hạn sau:

  • Phương pháp đặt ẩn phụ: Sử dụng khi biểu thức giới hạn có dạng phức tạp, có thể đơn giản hóa bằng cách đặt ẩn phụ.
  • Phương pháp sử dụng định lý giới hạn: Áp dụng các định lý giới hạn đã học để tính giới hạn của các hàm số cơ bản.
  • Phương pháp sử dụng quy tắc L'Hopital: Sử dụng khi giới hạn có dạng vô định (0/0 hoặc ∞/∞).

Lưu ý khi giải bài tập về giới hạn

Để giải bài tập về giới hạn một cách chính xác và hiệu quả, học sinh cần lưu ý:

  • Nắm vững các định nghĩa và tính chất của giới hạn.
  • Lựa chọn phương pháp tính giới hạn phù hợp với từng bài toán cụ thể.
  • Kiểm tra lại kết quả sau khi tính toán.

Bài tập luyện tập

Để củng cố kiến thức và kỹ năng giải bài tập về giới hạn, bạn có thể tự giải các bài tập sau:

  1. Tính limx→3 (x2 - 9) / (x - 3)
  2. Tính limx→-2 (x3 + 8) / (x + 2)
  3. Tính limx→∞ (3x2 + 2x + 1) / (x2 + 1)

Kết luận

Bài tập 8 trang 47 SGK Toán 12 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính giới hạn. Hy vọng với lời giải chi tiết và các lưu ý trên, bạn sẽ tự tin hơn trong quá trình học tập và giải quyết các bài toán tương tự.

Tài liệu, đề thi và đáp án Toán 12