Logo Header
  1. Môn Toán
  2. Giải bài tập 9 trang 73 SGK Toán 12 tập 1 - Cánh diều

Giải bài tập 9 trang 73 SGK Toán 12 tập 1 - Cánh diều

Giải bài tập 9 trang 73 SGK Toán 12 tập 1 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 1 - Cánh diều. Bài viết này sẽ hướng dẫn bạn giải bài tập 9 trang 73 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết và dễ tiếp thu nhất.

Người ta cần lắp một camera phía trên sân bóng để phát sóng truyền hình một trận bóng đá, camera có thể di động để luôn thu được hình ảnh rõ nét về diễn biến trên sân. Các kĩ sư dự định trồng bốn chiếc cột cao 30 m và sử dụng hệ thống cáp gắn vào bốn đầu cột để giữ camera ở vị trí mong muốn.

Đề bài

Người ta cần lắp một camera phía trên sân bóng để phát sóng truyền hình một trận bóng đá, camera có thể di động để luôn thu được hình ảnh rõ nét về diễn biến trên sân. Các kĩ sư dự định trồng bốn chiếc cột cao 30 m và sử dụng hệ thống cáp gắn vào bốn đầu cột để giữ camera ở vị trí mong muốn.

Mô hình thiết kế được xây dựng như sau: Trong hệ trục toạ độ \(Oxyz\) (đơn vị độ dài trên mỗi trục là 1 m), các đỉnh của bốn chiếc cột lần lượt là các điểm \(M\left( {90;0;30} \right),N\left( {90;120;30} \right)\),\(P\left( {0;\;120;\;30} \right),Q\left( {0;\;0;\;30} \right)\) (Hình 34)

Giải bài tập 9 trang 73 SGK Toán 12 tập 1 - Cánh diều 1

Giả sử \({K_0}\) là vị trí ban đầu của camera có cao độ bằng 25 và \({K_0}M = {K_0}N = {K_0}P = {K_0}Q\). Để theo dõi quả bóng đến vị trí \(A\), camera được hạ thấp theo phương thẳng đứng xuống điểm \({K_1}\) cao độ bằng 19. tìm các điểm \({K_0},{K_1}\) và vector \(\overrightarrow {{K_0}{K_1}} \)

Phương pháp giải - Xem chi tiếtGiải bài tập 9 trang 73 SGK Toán 12 tập 1 - Cánh diều 2

Trong không gian với hệ toạ độ Oxyz, cho điểm M.

Xác định hình chiếu M, của điểm M trên mặt phẳng Oxy. Trong mặt phẳng toạ độ Oxy, tìm hoành độ a, tung độ b của điểm M₁.

Xác định hình chiếu P của điểm M trên trục cao Oz, điểm P ứng với số c trên trục Oz. Số c là cao độ của điểm M.

Bộ số (a; b; c) là toạ độ của điểm M trong không gian với hệ toạ độ Oxyz, kí hiệu là M(a; b; c).

Lời giải chi tiết

Đầu tiên, chúng ta cần xác định vị trí ban đầu của camera, điểm \({K_0}\). Vì\(\;{K_0}M = {K_0}N = {K_0}P = {K_0}Q\), nghĩa là \({K_0}\) nằm ở trung tâm của hình hộp chữ nhật tạo bởi \(M,N,P,Q\). Do đó, tọa độ của \({K_0}\) sẽ là trung bình cộng của tọa độ của \(M,N,P,Q\).

Tọa độ của \({K_0}\) sẽ là:

\({K_0} = \left( {\frac{{90 + 90 + 0 + 0}}{4},\frac{{0 + 120 + 120 + 0}}{4},25} \right) = \left( {45,60,25} \right)\)

Tiếp theo, chúng ta cần xác định vị trí của camera sau khi nó được hạ xuống, điểm \({K_1}\). Vì camera được hạ theo phương thẳng đứng, nên tọa độ x và y của \({K_1}\) sẽ giống như \({K_0}\), chỉ có tọa độ z (cao độ) thay đổi.

Vậy tọa độ của\(\;{K_1}\) sẽ là: \({K_1}\left( {45,60,19} \right)\)

Cuối cùng, vector từ \({K_0}\) đến \({K_1}\), \(\overrightarrow {{K_0}{K_1}} \), sẽ là:

\(\overrightarrow {{K_0}{K_1}} = \;{K_1} - {K_0} = \left( {0,0,19 - 25} \right) = \left( {0,0, - 6} \right)\)

Vậy, điểm ban đầu của camera là \({K_0}\left( {45,\;60,\;25} \right)\), điểm sau khi camera được hạ xuống là \({K_1}\left( {45,\;60,\;19} \right)\) và vector từ \({K_0}\) đến \({K_1}\) là \(\overrightarrow {{K_0}{K_1}} \left( {0,0, - 6} \right).\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 9 trang 73 SGK Toán 12 tập 1 - Cánh diều đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 9 trang 73 SGK Toán 12 tập 1 - Cánh diều: Phân tích và Lời giải Chi Tiết

Bài tập 9 trang 73 SGK Toán 12 tập 1 - Cánh diều thuộc chương trình học về giới hạn của hàm số. Đây là một chủ đề quan trọng, nền tảng cho các kiến thức toán học nâng cao hơn. Để giải quyết bài tập này, học sinh cần nắm vững các khái niệm về giới hạn, giới hạn một bên, và các tính chất của giới hạn.

Nội dung bài tập 9 trang 73 SGK Toán 12 tập 1 - Cánh diều

Bài tập yêu cầu tính giới hạn của hàm số tại một điểm cho trước. Cụ thể, bài tập có thể có dạng:

  • Tính limx→a f(x)
  • Tính limx→a+ f(x)limx→a- f(x)

Trong đó, f(x) là một hàm số cụ thể và a là một giá trị thực.

Phương pháp giải bài tập 9 trang 73 SGK Toán 12 tập 1 - Cánh diều

  1. Xác định dạng của hàm số: Hàm số có thể là hàm đa thức, hàm phân thức, hàm căn thức, hoặc hàm lượng giác.
  2. Áp dụng các quy tắc tính giới hạn:
    • Giới hạn của một tổng bằng tổng các giới hạn.
    • Giới hạn của một tích bằng tích các giới hạn.
    • Giới hạn của một thương bằng thương các giới hạn (với mẫu khác 0).
  3. Sử dụng các công thức giới hạn đặc biệt:
    • limx→0 sin(x)/x = 1
    • limx→0 (1 - cos(x))/x = 0
  4. Phân tích và rút gọn biểu thức: Đôi khi, cần phân tích và rút gọn biểu thức trước khi tính giới hạn.
  5. Kiểm tra điều kiện xác định: Đảm bảo rằng biểu thức xác định tại điểm cần tính giới hạn.

Ví dụ minh họa giải bài tập 9 trang 73 SGK Toán 12 tập 1 - Cánh diều

Ví dụ: Tính limx→2 (x2 - 4) / (x - 2)

Lời giải:

Ta có:

limx→2 (x2 - 4) / (x - 2) = limx→2 (x - 2)(x + 2) / (x - 2)

x ≠ 2, ta có thể rút gọn biểu thức:

limx→2 (x + 2) = 2 + 2 = 4

Vậy, limx→2 (x2 - 4) / (x - 2) = 4

Lưu ý khi giải bài tập về giới hạn

  • Luôn kiểm tra điều kiện xác định của hàm số.
  • Sử dụng các quy tắc và công thức giới hạn một cách chính xác.
  • Phân tích và rút gọn biểu thức một cách cẩn thận.
  • Thực hành nhiều bài tập để nắm vững kiến thức và kỹ năng.

Tài liệu tham khảo và hỗ trợ học tập

Ngoài SGK Toán 12 tập 1 - Cánh diều, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách bài tập Toán 12
  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng trên YouTube

Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài tập 9 trang 73 SGK Toán 12 tập 1 - Cánh diều. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12