Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 1 - Cánh diều. Bài viết này sẽ hướng dẫn bạn giải bài tập 4 trang 46 một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Đường cong của hình 33 là đồ thị của hàm số nào sau đây A. \(y = \frac{{x + 1}}{{x - 1}}\) B. \(y = \frac{{ - x + 1}}{{x + 1}}\) C. \(y = \frac{{x - 1}}{{x + 1}}\) D. \(y = \frac{{ - x}}{{x + 1}}\)
Đề bài
Đường cong của hình 33 là đồ thị của hàm số nào sau đây
A. \(y = \frac{{x + 1}}{{x - 1}}\)
B. \(y = \frac{{ - x + 1}}{{x + 1}}\)
C. \(y = \frac{{x - 1}}{{x + 1}}\)
D. \(y = \frac{{ - x}}{{x + 1}}\)
Phương pháp giải - Xem chi tiết
Lời giải chi tiết
Hình 33 có
1 TCĐ \(x = - 1\)
1 TCN \(y = - 1\)
Vậy hàm số cần tìm là: \(y = \frac{{ - x}}{{x + 1}}\)
Đáp án D
Bài tập 4 trang 46 SGK Toán 12 tập 1 - Cánh diều thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn một bên, giới hạn tại một điểm và các tính chất của giới hạn để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là rất quan trọng để đạt kết quả tốt trong môn Toán.
Bài tập 4 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh tính giới hạn của hàm số tại một điểm cho trước. Các hàm số có thể là hàm đa thức, hàm hữu tỉ hoặc hàm lượng giác. Để giải quyết bài tập này, học sinh cần:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài tập 4:
Để tính giới hạn của hàm số tại một điểm, ta có thể sử dụng phương pháp thay trực tiếp giá trị của điểm đó vào hàm số. Nếu kết quả là một số thực, thì đó là giới hạn của hàm số tại điểm đó. Nếu kết quả là một biểu thức không xác định, ta cần sử dụng các kỹ thuật biến đổi đại số để đơn giản hóa biểu thức và tìm ra giới hạn.
Ví dụ, nếu hàm số là f(x) = (x^2 - 1) / (x - 1), ta có thể phân tích tử số thành (x - 1)(x + 1). Khi đó, ta có thể rút gọn biểu thức thành f(x) = x + 1. Vậy, giới hạn của hàm số tại x = 1 là 1 + 1 = 2.
Tương tự như câu a, ta cần xác định đúng dạng hàm số và phương pháp tính giới hạn phù hợp. Nếu hàm số là hàm hữu tỉ, ta có thể sử dụng phương pháp chia cả tử số và mẫu số cho x^n, trong đó n là bậc cao nhất của x trong mẫu số. Khi đó, ta có thể tìm ra giới hạn của hàm số khi x tiến tới vô cùng.
Đối với các hàm số lượng giác, ta cần sử dụng các công thức lượng giác và các giới hạn đặc biệt để tính giới hạn. Ví dụ, ta có giới hạn sin(x) / x khi x tiến tới 0 là 1. Ta cũng có giới hạn (1 - cos(x)) / x^2 khi x tiến tới 0 là 1/2.
Ngoài bài tập 4, còn rất nhiều bài tập tương tự về giới hạn hàm số trong SGK Toán 12 tập 1 - Cánh diều. Để giải quyết các bài tập này, học sinh cần nắm vững các kiến thức sau:
Để củng cố kiến thức và kỹ năng giải bài tập về giới hạn hàm số, học sinh nên luyện tập thêm các bài tập trong SGK, sách bài tập và các đề thi thử. Ngoài ra, học sinh cũng có thể tham khảo các tài liệu học tập trực tuyến và các video hướng dẫn trên YouTube.
Bài tập 4 trang 46 SGK Toán 12 tập 1 - Cánh diều là một bài tập quan trọng giúp học sinh hiểu rõ hơn về khái niệm giới hạn hàm số và các phương pháp tính giới hạn. Việc nắm vững kiến thức và kỹ năng giải bài tập này là rất cần thiết để đạt kết quả tốt trong môn Toán.
Dạng bài tập | Phương pháp giải |
---|---|
Hàm đa thức | Thay trực tiếp |
Hàm hữu tỉ | Chia cả tử và mẫu cho x^n |
Hàm lượng giác | Sử dụng công thức lượng giác và giới hạn đặc biệt |