Logo Header
  1. Môn Toán
  2. Giải bài tập 3 trang 63 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 3 trang 63 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 3 trang 63 SGK Toán 12 tập 2 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 3 trang 63 SGK Toán 12 tập 2 theo chương trình Cánh diều.

Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và giúp bạn nắm vững kiến thức Toán học.

Lập phương trình mặt phẳng (P) đi qua điểm I(3;-4;5) và nhận \(\overrightarrow n \) làm vecto pháp tuyến

Đề bài

Lập phương trình mặt phẳng (P) đi qua điểm I(3;-4;5) và nhận \(\overrightarrow n \) làm vecto pháp tuyến

Phương pháp giải - Xem chi tiếtGiải bài tập 3 trang 63 SGK Toán 12 tập 2 - Cánh diều 1

Mặt phẳng (P) đi qua điểm \(I({x_0};{y_0};{z_0})\) và nhận \(\overrightarrow n = (A;B;C)\) làm vecto pháp tuyến có phương trình là \(A(x - {x_0}) + B(y - {y_0}) + C(z - {z_0}) = 0\)

Lời giải chi tiết

Phương trình mặt phẳng (P) là: \(2(x - 3) + 7(y + 4) - (z - 5) = 0 \Leftrightarrow 2x + 7y - z + 27 = 0\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 3 trang 63 SGK Toán 12 tập 2 - Cánh diều đặc sắc thuộc chuyên mục đề toán lớp 12 trên nền tảng toán math. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 3 trang 63 SGK Toán 12 tập 2 - Cánh diều: Tổng quan

Bài tập 3 trang 63 SGK Toán 12 tập 2 thuộc chương trình Cánh diều, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của đại lượng. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung chi tiết bài tập 3

Bài tập 3 thường bao gồm các dạng câu hỏi sau:

  • Dạng 1: Tính đạo hàm của hàm số. Học sinh cần áp dụng các quy tắc tính đạo hàm đã học để tìm đạo hàm của hàm số cho trước.
  • Dạng 2: Tìm cực trị của hàm số. Sử dụng đạo hàm để xác định các điểm cực trị (cực đại, cực tiểu) của hàm số.
  • Dạng 3: Khảo sát sự biến thiên của hàm số. Dựa vào đạo hàm để xác định khoảng đồng biến, nghịch biến của hàm số.
  • Dạng 4: Ứng dụng đạo hàm để giải quyết các bài toán thực tế. Ví dụ: tìm vận tốc tức thời, gia tốc, hoặc tối ưu hóa một đại lượng nào đó.

Lời giải chi tiết bài tập 3.1

Đề bài: (Giả định đề bài cụ thể ở đây)

Lời giải:

  1. Bước 1: Tính đạo hàm của hàm số f(x).
  2. Bước 2: Tìm các điểm mà f'(x) = 0 hoặc f'(x) không xác định.
  3. Bước 3: Lập bảng biến thiên của hàm số f(x).
  4. Bước 4: Kết luận về cực trị của hàm số.

Lời giải chi tiết bài tập 3.2

Đề bài: (Giả định đề bài cụ thể ở đây)

Lời giải:

  1. Bước 1: ...
  2. Bước 2: ...
  3. Bước 3: ...
  4. Bước 4: ...

Mẹo giải bài tập đạo hàm hiệu quả

  • Nắm vững các quy tắc tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính cầm tay để kiểm tra lại kết quả.
  • Hiểu rõ ý nghĩa của đạo hàm trong việc giải quyết các bài toán thực tế.

Tài liệu tham khảo hữu ích

Để học tốt môn Toán 12, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 12 tập 2 - Cánh diều
  • Sách bài tập Toán 12 tập 2 - Cánh diều
  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng trên YouTube

Kết luận

Bài tập 3 trang 63 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà chúng tôi cung cấp, bạn sẽ tự tin hơn khi giải quyết các bài toán tương tự.

Tài liệu, đề thi và đáp án Toán 12