Logo Header
  1. Môn Toán
  2. Giải bài tập 10 trang 47 SGK Toán 12 tập 1 - Cánh diều

Giải bài tập 10 trang 47 SGK Toán 12 tập 1 - Cánh diều

Giải bài tập 10 trang 47 SGK Toán 12 tập 1 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 1 - Cánh diều. Bài tập 10 trang 47 thuộc chương trình học quan trọng, đòi hỏi học sinh nắm vững kiến thức và kỹ năng giải quyết vấn đề.

Chúng tôi hiểu rằng việc tự học đôi khi gặp khó khăn, vì vậy đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải dễ hiểu, kèm theo các bước giải chi tiết, giúp bạn nắm bắt phương pháp giải bài tập một cách hiệu quả.

Một trang sách có dạng hình chữ nhật với diện tích là 384 cm². Sau khi để lề trên và lề dưới đều là 3 cm, để lề trái và lề phải đều là 2 cm. Phần còn lại của trang sách được in chữ. Kích thước tối ưu của trang sách là bao nhiêu để phần in chữ trên trang sách có diện tích lớn nhất?

Đề bài

Một trang sách có dạng hình chữ nhật với diện tích là 384 cm². Sau khi để lề trên và lề dưới đều là 3 cm, để lề trái và lề phải đều là 2 cm. Phần còn lại của trang sách được in chữ. Kích thước tối ưu của trang sách là bao nhiêu để phần in chữ trên trang sách có diện tích lớn nhất?

Phương pháp giải - Xem chi tiếtGiải bài tập 10 trang 47 SGK Toán 12 tập 1 - Cánh diều 1

Phân tích đề bài.

Tìm các mối quan hệ trong bài.

Lập phương trình và giải.

Lời giải chi tiết

Giả sử chiều rộng của trang sách là x và chiều dài là y. Theo đề bài, diện tích của trang sách là:

$xy~=~384~cm{}^\text{2}$.

Khi để lề trên và lề dưới đều là 3 cm, lề trái và lề phải đều là 2 cm thì diện tích phần in chữ sẽ là:

\(\left( {y - 2.3} \right)\left( {x - 2.2} \right)\; = \;\left( {y - 6} \right)\left( {x - 4} \right)\)

Ta có: \(x = \frac{{384}}{y}\).

Thay x vào phương trình \(\left( {y - 6} \right)\left( {x - 4} \right)\) ta thu được \(\left( {x - 4} \right)\left( {\frac{{384}}{x} - 6} \right)\).

Xét \(f\left( x \right) = \;\left( {x - 4} \right)\left( {\frac{{384}}{x} - 6} \right)\)

\( = \frac{{ - 6{x^2} + 408x - 1536}}{x}\) với \(x \in (4;64)\) do \(\left\{ {\begin{array}{*{20}{c}}{x - 4 > 0}\\{\frac{{384}}{x} - 6 > 0}\end{array}} \right.\).

Ta có: \(f'(x) = \frac{{ - 6{x^2} + 1536}}{{{x^2}}} = 0 \Leftrightarrow x = \pm 16\). Với \(x \in (4;64)\) thì chỉ xét x = 16.

Ta có bảng biến thiên:

Giải bài tập 10 trang 47 SGK Toán 12 tập 1 - Cánh diều 2

Với \(x = 16\) thì \(y = \frac{{384}}{x} = \frac{{384}}{{16}} = 24\).

Vậy kích thước của trang sách có chiều dài 24 cm, chiều rộng 16 cm thì phần in chữ trên trang sách có diện tích lớn nhất.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 10 trang 47 SGK Toán 12 tập 1 - Cánh diều đặc sắc thuộc chuyên mục đề toán lớp 12 trên nền tảng soạn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 10 trang 47 SGK Toán 12 tập 1 - Cánh diều: Tổng quan và Phương pháp giải

Bài tập 10 trang 47 SGK Toán 12 tập 1 - Cánh diều thuộc chương trình học về Đạo hàm của hàm số. Đây là một trong những chủ đề quan trọng, nền tảng cho việc học tập các kiến thức toán học nâng cao hơn. Bài tập này thường yêu cầu học sinh vận dụng các công thức đạo hàm cơ bản, quy tắc tính đạo hàm của tổng, hiệu, tích, thương của các hàm số, và đạo hàm của hàm hợp.

Nội dung bài tập 10 trang 47 SGK Toán 12 tập 1 - Cánh diều

Bài tập 10 thường bao gồm các dạng bài sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước, thường là các hàm số đơn giản hoặc hàm số phức tạp được xây dựng từ các hàm số cơ bản.
  • Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của một hàm số, tức là đạo hàm của đạo hàm cấp nhất.
  • Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Yêu cầu sử dụng đạo hàm để tìm cực trị của hàm số, khảo sát sự biến thiên của hàm số, hoặc giải các bài toán liên quan đến vận tốc, gia tốc.

Phương pháp giải bài tập 10 trang 47 SGK Toán 12 tập 1 - Cánh diều

Để giải quyết bài tập 10 trang 47 SGK Toán 12 tập 1 - Cánh diều một cách hiệu quả, bạn cần nắm vững các kiến thức và kỹ năng sau:

  1. Nắm vững các công thức đạo hàm cơ bản: Ví dụ: đạo hàm của x^n, sin(x), cos(x), e^x, ln(x),...
  2. Hiểu rõ các quy tắc tính đạo hàm: Quy tắc tính đạo hàm của tổng, hiệu, tích, thương của các hàm số, quy tắc đạo hàm của hàm hợp.
  3. Biết cách áp dụng các quy tắc đạo hàm vào từng dạng bài tập cụ thể: Luyện tập nhiều bài tập để làm quen với các dạng bài tập khác nhau và rèn luyện kỹ năng giải bài tập.
  4. Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa giải bài tập 10 trang 47 SGK Toán 12 tập 1 - Cánh diều

Bài tập: Tính đạo hàm của hàm số f(x) = x^3 + 2x^2 - 5x + 1.

Giải:

f'(x) = (x^3)' + (2x^2)' - (5x)' + (1)'

f'(x) = 3x^2 + 4x - 5 + 0

f'(x) = 3x^2 + 4x - 5

Lưu ý khi giải bài tập 10 trang 47 SGK Toán 12 tập 1 - Cánh diều

  • Luôn viết đầy đủ các bước giải để người đọc có thể dễ dàng theo dõi và hiểu được quá trình giải của bạn.
  • Sử dụng đúng ký hiệu toán học và viết rõ ràng, dễ đọc.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Nếu gặp khó khăn, hãy tham khảo các tài liệu học tập, sách giáo khoa, hoặc tìm kiếm sự giúp đỡ từ giáo viên và bạn bè.

Tài liệu tham khảo hữu ích

Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 tập 1 - Cánh diều
  • Sách bài tập Toán 12 tập 1 - Cánh diều
  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng về đạo hàm trên YouTube

Kết luận

Bài tập 10 trang 47 SGK Toán 12 tập 1 - Cánh diều là một bài tập quan trọng, giúp bạn rèn luyện kỹ năng tính đạo hàm và ứng dụng đạo hàm để giải quyết các bài toán thực tế. Hy vọng với những hướng dẫn và ví dụ minh họa trên, bạn sẽ tự tin hơn khi giải quyết bài tập này. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12