Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 4 trang 26 SGK Toán 12 tập 2 theo chương trình Cánh diều.
Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và giúp bạn nắm vững kiến thức Toán học.
Cho \(\int\limits_{ - 2}^3 {f(x)dx} = - 10\), \(F(x)\) là một nguyên hàm của hàm số f(x) trên đoạn [-2;3], F(3) = -8. Tính F(-2)
Đề bài
Cho \(\int\limits_{ - 2}^3 {f(x)dx} = - 10\), \(F(x)\) là một nguyên hàm của hàm số f(x) trên đoạn [-2;3], F(3) = -8. Tính F(-2)
Phương pháp giải - Xem chi tiết
Cho hàm số f(x) liên tục trên đoạn [a;b]. Giả sử F(x) là nguyên hàm của f(x) trên đoạn [a;b]. Hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu là \(\int\limits_a^b {f(x)} dx\)
Lời giải chi tiết
\(\int\limits_{ - 2}^3 {f(x)dx} = \left. {F(x)} \right|_{ - 2}^3 = F(3) - F( - 2) = - 10 \Leftrightarrow F( - 2) = 2\)
Bài tập 4 trang 26 SGK Toán 12 tập 2 - Cánh diều thuộc chương trình học về đạo hàm của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế, cụ thể là tìm đạo hàm của hàm số và phân tích các tính chất của đạo hàm.
Bài tập 4 bao gồm các câu hỏi nhỏ, yêu cầu học sinh:
Để giải quyết bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Câu a: Tính đạo hàm của hàm số f(x) = x3 - 3x2 + 2x - 1.
Lời giải:
f'(x) = 3x2 - 6x + 2
Câu b: Xác định khoảng đồng biến, nghịch biến của hàm số f(x) = x3 - 3x2 + 2x - 1.
Lời giải:
f'(x) = 3x2 - 6x + 2
Giải phương trình f'(x) = 0, ta được x1 = (3 - √3)/3 và x2 = (3 + √3)/3.
Lập bảng xét dấu f'(x):
x | -∞ | (3 - √3)/3 | (3 + √3)/3 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
f(x) | Đồng biến | Nghịch biến | Đồng biến |
Vậy hàm số đồng biến trên các khoảng (-∞; (3 - √3)/3) và ((3 + √3)/3; +∞), nghịch biến trên khoảng ((3 - √3)/3; (3 + √3)/3).
Câu c: Tìm cực trị của hàm số f(x) = x3 - 3x2 + 2x - 1.
Lời giải:
f'(x) = 3x2 - 6x + 2
Giải phương trình f'(x) = 0, ta được x1 = (3 - √3)/3 và x2 = (3 + √3)/3.
f''(x) = 6x - 6
f''((3 - √3)/3) = 6((3 - √3)/3) - 6 = -2√3 < 0, vậy hàm số đạt cực đại tại x = (3 - √3)/3.
f''((3 + √3)/3) = 6((3 + √3)/3) - 6 = 2√3 > 0, vậy hàm số đạt cực tiểu tại x = (3 + √3)/3.
Bài tập 4 trang 26 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc phân tích hàm số. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin hơn khi giải quyết các bài tập tương tự.