Logo Header
  1. Môn Toán
  2. Giải bài tập 7 trang 81 SGK Toán 12 tập 1 - Cánh diều

Giải bài tập 7 trang 81 SGK Toán 12 tập 1 - Cánh diều

Giải bài tập 7 trang 81 SGK Toán 12 tập 1 - Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 1 - Cánh diều. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài tập 7 trang 81, từ đó nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất, kèm theo các ví dụ minh họa cụ thể để bạn có thể áp dụng vào các bài tập tương tự.

Cho hình hộp ABCD.A’B’C’D’, biết A(1;0;1), B(2;1;2), D(1;-1;1), C’(4;5;-5). Hãy chỉ ra tọa độ của một vecto khác (overrightarrow 0 ) vuông góc với cả hai vecto trong mỗi trường hợp sau: a) (overrightarrow {AC} ) và (overrightarrow {B'D'} ) b) (overrightarrow {AC'} ) và (overrightarrow {BD} )

Đề bài

Cho hình hộp ABCD.A’B’C’D’, biết A(1;0;1), B(2;1;2), D(1;-1;1), C’(4;5;-5). Hãy chỉ ra tọa độ của một vecto khác \(\overrightarrow 0 \) vuông góc với cả hai vecto trong mỗi trường hợp sau:

a) \(\overrightarrow {AC} \) và \(\overrightarrow {B'D'} \)

b) \(\overrightarrow {AC'} \) và \(\overrightarrow {BD} \)

Phương pháp giải - Xem chi tiếtGiải bài tập 7 trang 81 SGK Toán 12 tập 1 - Cánh diều 1

Cho hai vecto \(\overrightarrow u = ({x_1};{y_1};{z_1})\) và \(\overrightarrow v = ({x_2};{y_2};{z_2})\) không cùng phương. Khi đó, vecto \(\overrightarrow w = ({y_1}{z_2} - {y_2}{z_1};{z_1}{x_2} - {z_2}{x_1};{x_1}{y_2} - {x_2}{y_1})\) vuông góc với cả hai vecto \(\overrightarrow u \) và \(\overrightarrow v \)

Lời giải chi tiết

Giải bài tập 7 trang 81 SGK Toán 12 tập 1 - Cánh diều 2

a) Ta có: \(\overrightarrow {AB} = (1;1;1),\overrightarrow {AD} = (0; - 1;0)\)

\(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \Leftrightarrow \overrightarrow {AC} = (1;0;1\))

\(\overrightarrow {B'D'} = \overrightarrow {BD} = ( - 1; - 2; -1 )\)

\([\overrightarrow {AC} ,\overrightarrow {B'D'} ] = \left( {\left| \begin{array}{l}\;\;\;0\;\;\;\;1\\ - 2\;\;\;\;\;1\end{array} \right|;\left| \begin{array}{l}1\;\;\;\;\;\;1\\\;-1\;\;\;\;\; - 1\end{array} \right|;\left| \begin{array}{l}1\;\;\;\;\;\;\;0\\ - 1\;\;\;\; - 2\end{array} \right|} \right) = (2; 0;- 2)\)

Chọn \(\overrightarrow u = (2; 0; - 2)\) vuông góc với cả hai vecto \(\overrightarrow {AC} \) và \(\overrightarrow {B'D'} \).

b) \(\overrightarrow {AC'} = (3;5; - 6)\), \(\overrightarrow {BD} = ( - 1; - 2; - 1)\)

\([\overrightarrow {AC'} ,\overrightarrow {BD} ] = \left( {\left| \begin{array}{l}\;\;\;5\;\;\;\; - 6\\ - 2\;\;\;\;\; - 1\end{array} \right|;\left| \begin{array}{l} - 6\;\;\;\;\;\;3\\\; - 1\;\;\;\;\; - 1\end{array} \right|;\left| \begin{array}{l}3\;\;\;\;\;\;\;5\\ - 1\;\;\;\; - 2\end{array} \right|} \right) = ( - 17;9; - 1)\)

Chọn \(\overrightarrow v = ( - 17;9; - 1)\) vuông góc với cả hai vecto \(\overrightarrow {AC'} \) và \(\overrightarrow {BD} \).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 7 trang 81 SGK Toán 12 tập 1 - Cánh diều đặc sắc thuộc chuyên mục đề thi toán 12 trên nền tảng tài liệu toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 7 trang 81 SGK Toán 12 tập 1 - Cánh diều: Tổng quan

Bài tập 7 trang 81 SGK Toán 12 tập 1 - Cánh diều thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ cho kỳ thi THPT Quốc gia mà còn là nền tảng cho các môn học ở bậc đại học.

Nội dung bài tập 7 trang 81 SGK Toán 12 tập 1 - Cánh diều

Bài tập 7 thường bao gồm các dạng bài sau:

  • Tính đạo hàm của hàm số tại một điểm cho trước.
  • Tìm đạo hàm của hàm số.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến tốc độ thay đổi, cực trị của hàm số.

Phương pháp giải bài tập 7 trang 81 SGK Toán 12 tập 1 - Cánh diều

Để giải quyết bài tập 7 trang 81 SGK Toán 12 tập 1 - Cánh diều một cách hiệu quả, bạn cần:

  1. Nắm vững các công thức đạo hàm cơ bản.
  2. Hiểu rõ các quy tắc tính đạo hàm (quy tắc cộng, trừ, nhân, chia, hàm hợp).
  3. Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  4. Phân tích kỹ đề bài để xác định đúng yêu cầu và phương pháp giải phù hợp.

Lời giải chi tiết bài tập 7 trang 81 SGK Toán 12 tập 1 - Cánh diều

Dưới đây là lời giải chi tiết cho từng phần của bài tập 7 trang 81 SGK Toán 12 tập 1 - Cánh diều:

Câu a:

Đề bài: Tính đạo hàm của hàm số f(x) = x3 - 2x2 + 5x - 1 tại x = 2.

Lời giải:

f'(x) = 3x2 - 4x + 5

f'(2) = 3(2)2 - 4(2) + 5 = 12 - 8 + 5 = 9

Vậy, đạo hàm của hàm số f(x) tại x = 2 là 9.

Câu b:

Đề bài: Tìm đạo hàm của hàm số g(x) = sin(2x) + cos(x).

Lời giải:

g'(x) = 2cos(2x) - sin(x)

Vậy, đạo hàm của hàm số g(x) là 2cos(2x) - sin(x).

Câu c:

Đề bài: Cho hàm số h(x) = (x2 + 1) / (x - 1). Tính h'(x).

Lời giải:

Áp dụng quy tắc đạo hàm của thương:

h'(x) = [(2x)(x - 1) - (x2 + 1)(1)] / (x - 1)2

h'(x) = (2x2 - 2x - x2 - 1) / (x - 1)2

h'(x) = (x2 - 2x - 1) / (x - 1)2

Vậy, đạo hàm của hàm số h(x) là (x2 - 2x - 1) / (x - 1)2.

Ví dụ minh họa

Ví dụ 1: Một vật chuyển động theo phương trình s(t) = t2 + 3t + 2 (s tính bằng mét, t tính bằng giây). Tính vận tốc của vật tại thời điểm t = 5 giây.

Lời giải:

Vận tốc của vật là đạo hàm của phương trình chuyển động:

v(t) = s'(t) = 2t + 3

Tại thời điểm t = 5 giây, vận tốc của vật là:

v(5) = 2(5) + 3 = 13 m/s

Bài tập luyện tập

Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:

  • Bài 1: Tính đạo hàm của hàm số y = x4 - 3x2 + 2.
  • Bài 2: Tìm đạo hàm của hàm số y = ex + ln(x).
  • Bài 3: Cho hàm số y = x / (x + 1). Tính y'.

Kết luận

Bài tập 7 trang 81 SGK Toán 12 tập 1 - Cánh diều là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính đạo hàm và vận dụng đạo hàm vào giải quyết các bài toán thực tế. Hy vọng với lời giải chi tiết và các ví dụ minh họa trên, bạn đã hiểu rõ cách giải bài tập này và tự tin hơn trong quá trình học tập môn Toán.

Tài liệu, đề thi và đáp án Toán 12