Chào mừng các em học sinh đến với lời giải chi tiết bài tập 2 trang 42 SGK Toán 12 tập 2 - Cánh diều. Tại giaitoan.edu.vn, chúng tôi cung cấp đáp án chính xác, dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập Toán 12.
Bài tập này thuộc chương trình học Toán 12 tập 2, tập trung vào các kiến thức về tích phân.
Biết \(F(x) = {x^3}\) là một nguyên hàm của hàm số f(x) trên \(\mathbb{R}\). Giá trị của \(\int\limits_1^2 {[2 + f(x)]dx} \) bằng: A. \(\frac{{23}}{4}\) B. 7 C. 9 D. \(\frac{{15}}{4}\)
Đề bài
Biết \(F(x) = {x^3}\) là một nguyên hàm của hàm số f(x) trên \(\mathbb{R}\). Giá trị của \(\int\limits_1^2 {[2 + f(x)]dx} \) bằng:
A. \(\frac{{23}}{4}\)
B. 7
C. 9
D. \(\frac{{15}}{4}\)
Phương pháp giải - Xem chi tiết
Sử dụng tính chất của tích phân \(\int\limits_a^b {\left( {f(x) + g(x)} \right)} dx = \int\limits_a^b {f(x)} dx + \int\limits_a^b {g(x)} dx\)
Lời giải chi tiết
\(\int\limits_1^2 {[2 + f(x)]dx} = \int\limits_1^2 {2dx} + \int\limits_1^2 {f(x)dx} = \left. {2x} \right|_1^2 + \left. {{x^3}} \right|_1^2 = 9\)
Chọn C
Bài tập 2 trang 42 SGK Toán 12 tập 2 - Cánh diều yêu cầu học sinh vận dụng kiến thức về tích phân để tính diện tích hình phẳng giới hạn bởi các đường cong. Đây là một dạng bài tập quan trọng, thường xuyên xuất hiện trong các kỳ thi THPT Quốc gia. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về tích phân, phương pháp tính tích phân và kỹ năng vẽ đồ thị hàm số.
Bài tập 2 bao gồm các câu hỏi nhỏ, yêu cầu tính diện tích hình phẳng giới hạn bởi các đường cong cụ thể. Ví dụ, học sinh có thể được yêu cầu tính diện tích hình phẳng giới hạn bởi đường cong y = f(x), trục Ox và hai đường thẳng x = a, x = b.
Ví dụ: Tính diện tích hình phẳng giới hạn bởi đường cong y = x2, trục Ox và hai đường thẳng x = 0, x = 2.
Giải:
Để củng cố kiến thức và kỹ năng giải bài tập về tích phân, học sinh có thể luyện tập thêm các bài tập tương tự trong SGK Toán 12 tập 2 - Cánh diều và các tài liệu tham khảo khác.
Bài tập 2 trang 42 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng, giúp học sinh rèn luyện kỹ năng tính tích phân và ứng dụng vào giải quyết các bài toán thực tế. Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả mà giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin chinh phục bài tập này và đạt kết quả tốt trong môn Toán.