Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 1 - Cánh diều. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài tập 2 trang 20, từ đó nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tiết kiệm thời gian và đạt kết quả tốt nhất.
Tìm giá trị lớn nhất của mỗi hàm số sau: a) (fleft( x right) = frac{4}{{1 + {x^2}}}). b) (fleft( x right) = x - frac{3}{x}) trên nửa khoảng ((0;3]).
Đề bài
Tìm giá trị lớn nhất của mỗi hàm số sau:
a) \(f\left( x \right) = \frac{4}{{1 + {x^2}}}\).
b) \(f\left( x \right) = x - \frac{3}{x}\) trên nửa khoảng \((0;3]\).
Phương pháp giải - Xem chi tiết
B1: Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.
B2: Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( a \right),f\left( b \right)\).
B3: So sánh các giá trị tìm được ở bước 2 và kết luận.
Lời giải chi tiết
a) Tập xác định \(D = R\).
Ta có: \(f'\left( x \right) = \frac{{8x}}{{{{\left( {1 + {x^2}} \right)}^2}}}\).
Nhận xét \(f'\left( x \right) = \frac{{ - 8x}}{{{{\left( {1 + {x^2}} \right)}^2}}} = 0 \Leftrightarrow x = 0\).
Vậy giá trị lớn nhất của hàm số bằng 4 khi \(x = 0\).
b) Ta có: \(f'\left( x \right) = 1 + \frac{3}{{{x^2}}}\).
Nhận xét \(f'\left( x \right) > 0\forall x \in (0;3]\). Hàm số đồng biến trên (0;3].
Vậy giá trị lớn nhất của hàm số bằng 2 khi \(x = 3\).
Bài tập 2 trang 20 SGK Toán 12 tập 1 - Cánh diều thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về định nghĩa giới hạn để tính giới hạn của hàm số tại một điểm. Việc nắm vững kiến thức này là nền tảng quan trọng để học các kiến thức tiếp theo về đạo hàm và tích phân.
Bài tập 2 bao gồm một số câu hỏi yêu cầu tính giới hạn của các hàm số khác nhau. Các hàm số này có thể là hàm đa thức, hàm phân thức, hoặc hàm lượng giác. Để giải bài tập này, học sinh cần:
Để tính giới hạn này, ta có thể thay trực tiếp x = 2 vào biểu thức:
limx→2 (x2 - 3x + 2) = 22 - 3*2 + 2 = 4 - 6 + 2 = 0
Tương tự như câu a, ta thay x = -1 vào biểu thức:
limx→-1 (x3 + 1) = (-1)3 + 1 = -1 + 1 = 0
Thay x = 0 vào biểu thức:
limx→0 (x2 + 2x + 1) = 02 + 2*0 + 1 = 0 + 0 + 1 = 1
Ngoài bài tập 2, còn rất nhiều bài tập tương tự về giới hạn hàm số. Để giải các bài tập này, học sinh có thể áp dụng các phương pháp sau:
Khi giải bài tập về giới hạn hàm số, học sinh cần lưu ý những điều sau:
Kiến thức về giới hạn hàm số có ứng dụng rất lớn trong nhiều lĩnh vực của toán học và khoa học kỹ thuật. Ví dụ, giới hạn hàm số được sử dụng để tính đạo hàm, tích phân, và để mô tả các hiện tượng vật lý như vận tốc, gia tốc, và dòng điện.
Bài tập 2 trang 20 SGK Toán 12 tập 1 - Cánh diều là một bài tập cơ bản về giới hạn hàm số. Việc giải bài tập này giúp học sinh nắm vững kiến thức và kỹ năng cần thiết để học các kiến thức tiếp theo. Hy vọng rằng, với lời giải chi tiết và các phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin hơn trong quá trình học tập môn Toán 12.